# Mirror Image Synthesis of Left Ends of Ciguatoxin and Gambiertoxin 4b 

Seijiro Hosokawa and Minoru Isobe*<br>Laboratory of Organic Chemistry, School of Bioagricultural Sciences, Nagoya University Chikusa, Nagoya 464-8601, J apan<br>Received J anuary 20, 1998


#### Abstract

Three compounds related to the $A B$ fragments of ciguatoxin and gambiertoxin $4 b$ and two diastereomers (at the C-2 position) of the ABC fragment of ciguatoxin have been synthesized in enantiomeric form. The stereochemistry of the C-2 position was introduced selectively from the corresponding pentose derivative. Construction of the A ring with its side chain was completed by Nicholas type cydization of an acetylene bis(cobalthexacarbonyl) complex followed by reductive decomplexation.


Ciguatoxin 1, a polyether compound obtained from moray eel Gymmothorax javanicus as a principal toxin causing ciguatera poisoning, ${ }^{1,2}$ originally produced by Gambierdiscus toxicus, is one of the most challenging targets for chemical synthesis. ${ }^{3}$ During the earlier course of our synthetic studies directed toward ciguatoxin, we have established a series of methodologies: (i) to introduce a carbon chain as an alkynyl group onto the di- or tetrahydropyranyl ring of sugars at the C-1 position in $\alpha$ orientation, ${ }^{4}$ (ii) to epimerize the alkynyl group into the $\beta$ orientation via a bis(cobalthexacarbonyl) complex, ${ }^{5}$ (iii) to open the di hydropyranyl ring to acyclic compounds, and (iv) to recydize the oxepene ring with high stereoselectivity. ${ }^{6}$ All of these reactions include cationic intermediates that are stabilized either by $\sigma-\pi$ conjugation with a silicon atom or by the Nicholas effect with the acetylene bis(cobalthexacarbonyl) complex. ${ }^{7}$ Recently, we have devel oped an effective synthesis giving unsaturated medium-size ( $7,8,9$, and 10 membered) ether rings based on the cyclization reaction with acetylene bis(cobalthexacarbonyl) complex followed by reductive decomplexation. ${ }^{8}$ Here we report the application of such methodology to the synthesis of left end fragments of $\mathbf{1}$ and $\mathbf{2}$ (Figure 1). ${ }^{3}$

Our first synthetic plan includes construction of both diastereomers of A ring with its side chain (Figure 2).

[^0]

Figure 1.


Figure 2.
Our retrosynthetic analysis of the target molecules $\mathbf{3}$ and 4 is shown in Scheme 1. The oxepene ring A in $\mathbf{6}$ would be derived through reductive decomplexation ${ }^{8}$ from the corresponding cyclic acetylene-cobalt complex, which may be derived from trans-allylic cation 7. This can be equilibrated from the cis-allylic cation 8 as an open chain intermediate from 9 . This disaccharide could be synthesized by combination of the oxocarbenium intermediate 10 and the silylacetylene 11. Coupling between the silylacetylene $\mathbf{1 1}$ and either of the epimeric oxocarbenium ions $\mathbf{1 0}$ should give the 2R isomer; thus, the precursor is L-arabinal (12), since stereochemistry of the C-2 position corresponds to the C-4 position of pentoses. Similarly, D-xylal 13 should provide the $2 S$ isomer by the coupling ${ }^{9}$ with $\mathbf{1 1}$ in the presence of a Lewis acid. ${ }^{4}$ Finally, acetylene $\mathbf{1 1}$ would be obtained from tri-O-acetyl-d-glucal 14.

Synthesis of the (trimethylsilyl)acetylene $\mathbf{1 1}$ is shown in Scheme 2. The starting material, tri-O-acetyl-d-glucal, 14 was converted into the known diol $15 .{ }^{10}$ Selective

[^1]Scheme 1


Scheme 2

protections of the primary and secondary hydroxy groups of 15 as pivalate and ethoxy ethyl ether, respectively, were followed by LAH reduction to afford alcohol 16. Iodination of the primary hydroxy group ${ }^{11}$ and subsequent treatment with lithium acetylide followed by deprotection of ethoxy ethyl group gave the silylacetylene 18. Reprotection of the C-4 hydroxyl group and reduction of the C-1 acetal with triethylsilane ${ }^{12}$ afforded the (trimethylsilyl)acetylene $\mathbf{1 1 .}$

[^2]Scheme 3


The synthesis of $(2 R, 5 S)-A B$ fragment 25 is shown in Scheme 3. Coupling of the silylacetylene $\mathbf{1 1}$ with arabinal dipivalate $\mathbf{1 2}$ afforded the disaccharide $\mathbf{2 0}$ with exclusive regio- and stereoselectivity. The disaccharide $\mathbf{2 0}$ was converted into the acetylene bis(cobalthexacarbonyl) complex 21 which was treated with pivalic anhydride and TfOH , followed by addition of MeOH to give the open chain product 22. ${ }^{6}$ Selective deacetylation gave 23, which was then subjected to cationic cyclization to provide the endo-acetylene cobalt complex $\mathbf{2 4}$ as a single isomer. Decomplexation ${ }^{8}$ of $\mathbf{2 4}$ by hydrogenation at $100 \mathrm{~kg} / \mathrm{cm}^{2}$ in the presence of Wilkinson catalyst afforded the ABfragment 25. The stereochemistry of 25 was confirmed by NMR studies; thus, 2 protons at $\delta 3.96$ (H-10) and $\delta$ $4.75(\mathrm{H}-5)$ showed a cross-peak in its NOESY spectrum and J $9,10=8.4 \mathrm{~Hz}$ indicating 2 R , 5S-stereochemistry. ${ }^{13,14}$
The synthesis of ( $2 S, 5 S$ )-AB fragment 27 was also achieved by employing the same strategy as above (Scheme 4). Coupling between silylacetylene 11 and D-xylal $\mathbf{1 3}$ led to the formation of the disaccharide $\mathbf{2 6}$ as a single isomer in this transformation.

[^3]

Scheme 4



The stereochemistry of $\mathbf{2 0}$ and $\mathbf{2 6}$ was determined from the coupling constant and NOE studies of their acetylene bis(cobalthexacarbonyl) complex 21 and 28, respectively (Figure 3). ${ }^{15}$



Figure 3.
Stereochemical course of the C-glycosylation is rationalized to give the syn products as shown in Figure 4; thus, three conformations (30,31, and 33) of the cation intermediate 29 were considered to be destined to either syn or anti stereochemistry. On the basis of the cation intermediate 29, the conformers 30 and 31 , which would afford the anti-isomer 32, have steric repulsion between the ligands of cobalt complex and ol efinic group. On the other hand, in the conformer 33 the bulky cobalt complex is outside of the side chain and has less steric repulsion; thus, 33 is ready to cyclize to obtain the synisomer 34. ${ }^{16}$

We have also applied above methodology for the synthesis of (5S)-AB fragment of gambiertoxin 4b 5. The difference between $\mathbf{5}$ and $\mathbf{2 5}$ locates on the side chain, so that it could be synthesized through endo-cobalt complex methodology. The synthetic route to 5 is shown in Scheme 5. Coupling between the lithium acetylide of $\mathbf{3 5}$ and the aldehyde $\mathbf{3 6}^{17}$ under Y amaguchi's procedure ${ }^{18}$ using $B F_{3}{ }^{\circ}$. $\mathrm{Et}_{2} \mathrm{O}$ and deprotection of the ethoxy ethyl group afforded the diol 37. This acetylene 37 was converted into the cobalt complex 38 which cyclized rapidly $\left(0^{\circ} \mathrm{C}, 20 \mathrm{~min}\right.$, $90 \%$ ) to give endo-cobalt complex 39. Finally, decomplexation accompanying dehalogenation with tri-n-butyltin hydride ${ }^{19}$ yielded 5, (5S)-AB fragment of gambiertoxin 4 b , as a single stereoisomer. The stereochemistry of 5 was proved from NMR analysis of the two protons at $\delta 4.00$

[^4]



Figure 4.
(H-10) and $\delta 4.63$ (H-5) showing a cross-peak in its NOESY spectrum as well as $\mathrm{H}-10$ coupling with H-9 (8.0 Hz ) indicating 5S-stereochemistry.

Scheme 5




35
(2steps, 100\%)



( $2 \mathrm{~S}, 5 \mathrm{5S}$ )
$\begin{array}{ll}R=H & 40 \\ R=p-B r B z & 42\end{array}$

(2R,5S)
$\begin{array}{ll}\mathrm{R}=\mathrm{H} & \mathbf{4 1} \\ \mathrm{R}=p-\mathrm{BrBz} & \mathbf{4 3}\end{array}$

Figure 5.
On the basis of these results, we began to synthesize the $A B C$ fragments of ciguatoxin to prove the absolute stereochemistry of ciguatoxin by comparing NMR and CD spectra of their $p$-bromobenzoate derivatives (F igure 5). ${ }^{3}$

We started the synthesis from methyl 2, 3, 4-tri-O-benzyl- $\alpha$-D-glucopyranoside $\mathbf{4 4}^{20}$ as shown in Scheme 6.

## Scheme 6



This primary alcohol 44 was converted to the corresponding iodide 45. Its methyl acetal moiety was transformed to the lactone 46 by three-step sequence including acetolysis, ${ }^{21}$ hydrolysis, and oxidation. Treatment of 46 with allylmagnesium bromide and then silyl hydride in the presence of Lewis acid produced the $\beta$-allyl-glycoside 47. ${ }^{22}$ At this point, 47 is pseudo-symmetrical product, thus the enantiomer of the BC ring could be synthesized

[^5]in the form of $\mathbf{4 8}$ by an additional two-carbon extension at the C-9 to construct the C ring (illustrated as a silylacetylenic compound of the pseudo-enantiomer of 56 or 57). Hydroxylation of the terminal olefin was achieved by hydroboration to give the primary alcohol 49, which was tosylated to provide 50. The benzyl protecting groups of 50 were removed ${ }^{23}$ into the 2,3,4-triol 51 in high yield. Cyclization of the C-ring was facilitated with t-BuOK to afford the bicyclic compound 52. Transformation of 52 to (trimethylsilyl)acetylene 57 is shown in Scheme 7. The

Scheme 7

two hydroxy groups were protected as TMS ethers using TMSOTf, which gave the best result since these survived even under the workup of DIBAL with $10 \%$ acetic acid at $0{ }^{\circ} \mathrm{C}$. The direct substitution of this iodide 53 into (trimethylsilyl)acetylene 56 was unsuccessful; thus, we took alternative route to synthesize 56. The iodine of 53 was replaced with cyanide to provide nitrile 54, which was reduced with DIBAL to afford the aldehyde 55. Aldehyde 55 was converted to (trimethylsilyl)acetylene 56 by Corey's protocol, ${ }^{24}$ which was transformed into diacetate 57. In this scheme, all steps were higher than 95\% yield, and (trimethylsilyl)acetylene 57 was afforded in high yield.

The completion of $(2 S, 5 S)-A B C$ fragment is shown in Scheme 8. The (trimethylsilyl)acetylene 57 was coupled with D-xylal 13 to afford 58 stereoselectively (20:1) at the C-5 position. This acetylene 58 was converted into acetylene bis(cobalthexacarbonyl) complex 62, and its stereochemistry of the C-5 position was determined (Figure 6). The left six-membered ring of 62 was opened via oxonium cation intermediate to obtain di pival ate 59. Acetyl groups were removed, and the resulting diol was cyclized to give $\mathbf{6 0}$ as a single stereoisomer at the C-5 position. The cobalt complex 60 received the reductive decomplexation under high-pressure hydrogen atmosphere to afford tricyclic ether 61, which was solvolyzed to give $(2 S, 5 S)$-ABC fragment $40 .{ }^{25}$ ( $2 R, 5 S$ )-ABC fragment 41 was prepared from L-arabinal using the same sequence as that shown for 40 (Schemes 8 and 9). The

[^6]Scheme 8

(97\%)
59


stereochemistry of 40 and 41 were proved by NMR analysis of two protons at $\delta 3.30(\mathrm{H}-10)$ and $\delta 4.58(\mathrm{H}-5)$


Figure 6.
showing cross-peak in its NOESY spectrum as well as H-10 coupling with H-9 (9.0 Hz) indicating 5S-stereochemistry.


Next, we converted 40 and 41 into tris(p-bromobenzoyl) ester 42 and 43 (Figure 5), respectively, and took the NMR spectra and CD spectra of 42 and 43 . These isomers can be distinguished by ${ }^{1} \mathrm{H}$ NMR spectra with the difference in chemical shifts of p-bromobenzoyl groups and C-2 protons, although triols 40 and 41 and their 1,2dipivalates did not show difference clearly. It means that a bulky group attached to the C-11 oxygen affects the
configuration of the C-2 substituent. CD spectra of these isomers showed an opposite Cotton effect to the result of Hirama and Yasumoto ${ }^{3}$ whose compounds are enantiomeric analogues of our compounds.

We have synthesized ( $2 R, 5 S$ )- and ( $2 S, 5 S$ )-AB fragments of ciguatoxin and (5S)-gambiertoxin 4b and two isomers of the ciguatoxin $A B C$ fragment and compared NMR spectra and CD spectra of these tris(p-bromobenzoate) derivatives. In these syntheses, we have established an effective methodology for construction of the oxepene A ring with its side chains. The key steps were C-glycosidation of (trimethylsilyl)acetylene, ring opening of pyranoside with acetylene bis(cobalthexacarbonyl) complex, cationic cyclization (Nicholas reaction), and reductive decomplexation under a high-pressure hydrogen atmosphere. With this methodology, synthetic study toward ciguatoxin is in progress.

## Experimental Section

General. All proton NMR spectra were measured in $\mathrm{CDCl}_{3}$ solvent, and chemical shifts are reported as $\delta$ values in parts per million relative to tetramethylsilane ( $\delta 0.00$ ) or $\mathrm{CDCl}_{3}$ ( $\delta$ 7.26) as internal standard. Data are reported as follows: chemical shift (integrated intensity or assignment, multiplicity, coupling constants in hertz, assignment). All carbon NMR spectra were measured in $\mathrm{CDCl}_{3}$ sol vent, and chemical shifts are reported as $\delta$ values in parts per million relative to $\mathrm{CDCl}_{3}$ ( $\delta 77.0$ ) as internal standard. The symbols (*) represent interchangeable assignments. Infrared spectra are reported in wavenumber ( $\mathrm{cm}^{-1}$ ). Analytical thin-layer chromatography (TLC) was conducted on precoated TLC plates (layer thickness 0.25 mm ); preparative layer chromatography (PLC) (Iayer thickness 0.5 mm or 2.0 mm ). Tetrahydrofuran (THF) was distilled from potassium metal in the presence of potassium benzophenone ketyl as an inductor. Dichloromethane was dried over molecular sieves 4A (nacalai tesque) and used without distillation. Pyridine and triethylamine were dried over KOH pellets and used without distillation.

Di-O-pivaloyl-L-arabinal (12). To a solution of di-O-triacetyl-L-arabinal ( $1.03 \mathrm{~g}, 5.15 \mathrm{mmol}$ ) in 20 mL of MeOH was added $20 \mu \mathrm{~L}$ of $\mathrm{NaOMe}(28 \%$ in MeOH ). After stirring for 3 h at room temperature, the reaction mixture was concentrated in vacuo, and the resulting residue was dissolved into $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(20 \mathrm{~mL})$. To this solution were added triethylamine ( 10 mL , 72.1 mmol ), pivaloyl chloride ( $3.2 \mathrm{~mL}, 25.8 \mathrm{mmol}$ ), and DMAP ( 20 mg ). After stirring overnight at room temperature, the reaction mixture was concentrated in vacuo. The resulting residue was purified by silica gel column chromatography (ether/hexane =1:2) gave dipivalate 12 as colorless oil ( 1.26 $\mathrm{g}, 4.44 \mathrm{mmol}, 86 \%$ ). $[\alpha]^{26} \mathrm{D}-208.1$ (c $0.81, \mathrm{CHCl}_{3}$ ); ${ }^{1} \mathrm{H}$ NMR ( $270 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.19$ ( $9 \mathrm{H}, \mathrm{s}, \mathrm{OPiv}$ ), 1.21 ( $9 \mathrm{H}, \mathrm{s}, \mathrm{OPiv}$ ), 3.96 ( $1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.5,9.5 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{a}$ ), 4.02 (1H, ddd, J $=10.5,4.5$, $1.5 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{~b}), 4.87$ ( $1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=6,5 \mathrm{~Hz}, \mathrm{H}-2$ ), 5.15 ( $1 \mathrm{H}, \mathrm{dt}$, J $=9.5,4 \mathrm{~Hz}, \mathrm{H}-4), 5.37(1 \mathrm{H}, \mathrm{brt}, \mathrm{J}=5 \mathrm{~Hz}, \mathrm{H}-3), 6.48(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=6 \mathrm{~Hz}, \mathrm{H}-1) ;{ }^{13} \mathrm{C}$ NMR ( $67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 26.98,27.04,38.6$, 38.7, 62.6, 62.7, 66.1, 97.6, 147.4, 177.1, 177.3; IR (KBr) 2977, 1733, 1644, 1481, 1281, 1264, 1158, $1086 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{5}$ : C, 63.36; H, 8.51. Found: C, 63.37; H, 8.38.

Di-O-pivaloyl-d-xylal (13). Di-O-pivaloyl-d-xylal 13 was prepared as 12 in $86 \%$. Mp $35-35.5^{\circ} \mathrm{C} ;[\alpha]^{27} \mathrm{D}-250.1$ (c 0.82 , $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ( $270 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.19$ ( $18 \mathrm{H}, \mathrm{s} \times 2$, OPiv), $3.95(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12,2 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{a}), 4.17$ ( $1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=12,3.5$, $1.5 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{~b}), 4.88-4.98$ ( $3 \mathrm{H}, \mathrm{m}, \mathrm{H}-2, \mathrm{H}-3$ and $\mathrm{H}-4$ ), 6.57 ( 1 H , d, J $=5.5 \mathrm{~Hz}, \mathrm{H}-1$ ); ${ }^{13} \mathrm{C}$ NMR ( $67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 26.8,26.9$, 38.4, 63.4, 63.5, 66.8, 97.4, 147.7, 177.1, 177.2; IR (KBr) 2974, 1734, 1645, 1481, 1275, 1251, 1148, $1095 \mathrm{~cm}^{-1}$; EI-MS m/z 284 $\left(\mathrm{M}^{+}\right), 183$ (M - OPiv ${ }^{+}$). Anal. Cal cd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{5}: \mathrm{C}, 63.36$; H, 8.51. Found: C, 63.30; H, 8.68.
(2S*,5S*,6R*)-5-(1'-Ethoxyethoxy)-6-(hydroxymethyl)-2-(isopropyloxy)-5,6-dihydro-2H-pyran (16). To a solution of the diol $15(23.4 \mathrm{~g}, 124 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(400 \mathrm{~mL})$ were successively added pyridine ( $34 \mathrm{~mL}, 420 \mathrm{mmol}$ ) and PivCl (16
$\mathrm{mL}, 130 \mathrm{mmol}$ ) at $0^{\circ} \mathrm{C}$. After stirring at $0{ }^{\circ} \mathrm{C}$ for 30 min , the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$ and extracted with ether ( $\times 3$ ). The extracts were washed with aq $1.0 \mathrm{~N} \mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}$, and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The crude oil was dissolved in 500 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. To this solution were added EVE ( $26 \mathrm{~mL}, 272 \mathrm{mmol}$ ) and PPTS ( $500 \mathrm{mg}, 1.99 \mathrm{mmol}$ ). After stirring at room temperature overnight, the reaction was quenched with sat. $\mathrm{NaHCO}_{3}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\times 2)$. The extracts were dried over $\mathrm{Na}_{2^{-}}$ $\mathrm{SO}_{4}$ and concentrated under reduced pressure. The resulting crude oil was dissolved in 500 mL of $\mathrm{Et}_{2} \mathrm{O}$. To this solution was added LAH ( $5.05 \mathrm{~g}, 133 \mathrm{mmol}$ ) in small portions at $0^{\circ} \mathrm{C}$. After stirring at $0{ }^{\circ} \mathrm{C}$ for 5 min , to the reaction mixture were successively added AcOEt, sat. $\mathrm{NH}_{4} \mathrm{Cl}$, and aq 3 N HCl and then extracted with ether $(\times 3)$. The extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. Purification of the residue with silica gel column chromatography (ether/hexane $=50: 50$ ) gave the col orless oil 16 (24.6 g, 76\%, in three steps). ${ }^{1} \mathrm{H}$ NMR ( $270 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ $1.14-1.25\left(9 \mathrm{H}, \mathrm{m}, \mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{OCH}\left(\mathrm{CH}_{3}\right) \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.32(3 \mathrm{H}$, d, J $\left.=5.2 \mathrm{~Hz}, \mathrm{OCH}\left(\mathrm{CH}_{3}\right) \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.94,2.33$ (total 1 H , each $\mathrm{m}, \mathrm{OH}$ ), 3.45-3.71 (2H, m, H-6), 3.71-3.87 (3H, m, H-5, OCH$\left.\left(\mathrm{CH}_{3}\right) \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.90-4.01\left(1 \mathrm{H}, \mathrm{m}, \mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.18,4.28$ (total 1 H , each $\mathrm{m}, \mathrm{H}-4$ ), 4.78,4.81 (total 1 H , each $\mathrm{q}, \mathrm{J}=5.2$ $\left.\mathrm{Hz}, \mathrm{OCH}\left(\mathrm{CH}_{3}\right) \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 5.08(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1), 5.66-5.73(1 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-3), 5.97(\mathrm{~d}, \mathrm{~J}=10.2 \mathrm{~Hz}, \mathrm{H}-2),[6.04(\mathrm{~d}, \mathrm{~J}=10.3 \mathrm{~Hz}, \mathrm{H}-2)$; IR (KBr) 3464(br), 2976, 2920, 1465, 1453, 1379, 1309, 1131, 1031, $934 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{O}_{5}: \mathrm{C}, 59.98 ; \mathrm{H}, 9.29$. Found: C, 59.90; H, 9.07.
(2S ${ }^{*}, 5 S^{*}, 6 \mathbf{R}^{*}$ )-5-( $\mathbf{I}^{\prime}$-Ethoxyethoxy)-6-(iodomethyl)-2-(iso-propyloxy)-5,6-dihydro-2H-pyran (17). To a solution of the alcohol $\mathbf{1 6}(215 \mathrm{mg}, 826 \mu \mathrm{~mol})$ in PhH ( 5 mL ) were successively added imidazole ( $140 \mathrm{mg}, 2.06 \mathrm{mmol}$ ), $\mathrm{PPh}_{3}(540 \mathrm{mg}, 2.06$ mmol ), and iodine ( $251 \mathrm{mg}, 1.98 \mathrm{mmol}$ ). After stirring at room temperature for 30 min , the reaction mixture was quenched with sat. $\mathrm{Na}_{2} \mathrm{SO}_{3}$ and extracted with ether $(\times 3)$. The extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. Purification of the residue with silica gel column chromatography (ether/hexane $=10: 90$ ) gave colorless oil 17 ( $298 \mathrm{mg}, 98 \%$ ). ${ }^{1 \mathrm{H}}$ NMR ( $270 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 1.15-1.62 (12H, m, OCH $\left.\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{OCH}\left(\mathrm{CH}_{3}\right) \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.31-$ 3.38 (1H, m, H-6), 3.44-3.72 (4H, m, H-5, H-6, OCH $\left(\mathrm{CH}_{3}\right) \mathrm{OCH}_{2-}$ $\left.\mathrm{CH}_{3}\right), 3.96,4.06$ (total 1 H , each $\left.\mathrm{m}, \mathrm{H}-4\right), 4.11(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.80,4.85$, (total 1 H , each $\mathrm{q}, \mathrm{J}=5.3 \mathrm{~Hz}$, $\left.\mathrm{OCH}\left(\mathrm{CH}_{3}\right) \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 5.10(1 \mathrm{H}$, brs, $\mathrm{H}-1), 5.65-5.75(1 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-3$ ), 5.94 (d, J $=12.0 \mathrm{~Hz}, \mathrm{H}-2$ ), [ 5.99 (d, J $=10.5 \mathrm{~Hz}, \mathrm{H}-2$ )]; IR (KBr) 2973, 2900, 1735, 1653, 1446, 1382, 1301, 1124, 1025, $943 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{O}_{4} \mathrm{I}: \mathrm{C}, 42.18 ; \mathrm{H}, 6.26$. Found: C, 42.11; H, 6.21.
(2S*,5S*,6R*)-5-H ydroxy-6-(3-(trimethylsilyl)-2-propy-nyl)-2-(isopropyloxy)-5,6-dihydro-2H-pyran (18). To a solution of $220 \mu \mathrm{~L}$ of (trimethylsilyl)acetylene ( 1.56 mmol ) in 4.0 mL of THF was added $770 \mu \mathrm{~L}$ ( 1.23 mmol ) of $\mathrm{n}-\mathrm{BuLi}$ ( 1.6 M in hexane) at $-78^{\circ} \mathrm{C}$. The resulting colorless solution was warmed to $0{ }^{\circ} \mathrm{C}$ and stirred for 30 min . To this solution were successively added a solution of iodide 17 ( $397 \mathrm{mg}, 1.02 \mathrm{mmol}$ ) in 4.0 mL of THF via cannula and 2.0 mL of HMPA at $0^{\circ} \mathrm{C}$. After stirring for 30 min at $0^{\circ} \mathrm{C}$, the reaction mixture was poured into a cold sat. $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with ether ( $\times 3$ ). The extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. Purification of the residue with silica gel column chromatography (ether/hexane $=10: 90$ ) gave colorless oil, ethoxyethyl ether of $\mathbf{1 7}^{\prime}$ ( 267 mg , $740 \mathrm{mmol}, 73 \%)$. Because of its instability, this compound was subjected to the next reaction right away. To a sol ution of the ethoxy ether ( $267 \mathrm{mg}, 740 \mathrm{mmol}$ ) in 6.0 mL of $\mathrm{i}-\mathrm{PrOH}$ was added PPTS ( $23.0 \mathrm{mg}, 0.09 \mathrm{mmol}$ ). The resulted solution was stirred for 1 h at room temperature and concentrated. The crude oil was purified by silica gel column chromatography (ether/hexane $=40: 60$ ) to give allyl al cohol 18 ( $201 \mathrm{mg}, 100 \%$ ). $[\alpha]^{25}$ D +66.7 (c 0.39, $\mathrm{CHCl}_{3}$ ); ${ }^{1} \mathrm{H}$ NMR ( $270 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 0.16$ ( $9 \mathrm{H}, \mathrm{s}, \mathrm{TMS}$ ), 1.18, 1.26 (each 3 H , each d, J $=6.2 \mathrm{~Hz},-\mathrm{CH}-$ $\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 1.95(1 \mathrm{H}, \mathrm{brd}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{OH}), 2.54(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=17$, $3,2 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}), 2.70(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=17,5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}), 3.80(1 \mathrm{H}$, ddd, J $=9,7.3,5 \mathrm{~Hz}, \mathrm{H}-5), 3.98-4.12\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4, \mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right)$,
5.06 ( $1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1$ ), 5.74 ( 1 H , ddd, J $=10,3,2 \mathrm{~Hz}, \mathrm{H}-3^{*}$ ), 5.90 (1H, m, H-2*); IR (KBr) 3433 (br), 2967, 2901, 2180, 1383, 1314, 1250, 1031, $839 \mathrm{~cm}^{-1} ; \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}=268\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{Si}: \mathrm{C}, 61.90 ; \mathrm{H}, 8.44$. Found: C, 61.77; H, 8.61
(2S*,5S*,6R*)-5-Acetoxy-6-(3-(trimethylsilyl)-2-propy-nyl)-2-(isopropyloxy)-5,6-dihydro-2H-pyran (19). To the solution of allyl alcohol $18(201 \mathrm{mg}, 750 \mu \mathrm{~mol})$ in 6.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were successively added pyridine ( $600 \mu \mathrm{~L}, 7.42 \mathrm{mmol}$ ), $\mathrm{AC}_{2} \mathrm{O}(200 \mu \mathrm{~L}, 1.99 \mathrm{mmol})$, and DMAP ( $50 \mathrm{mg}, 0.41 \mathrm{mmol}$ ). After stirring for 3 h , to the reaction mixture was added $\mathrm{H}_{2} \mathrm{O}$. The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\times 2)$. The extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude residue was purified by silica gel column chromatography (ether/hexane $=30: 70$ ) to give 19 (228 $\mathrm{mg}, 94 \%)$. $[\alpha]^{25} \mathrm{D}+88.1$ (c $0.99, \mathrm{CHCl}_{3}$ ); ${ }^{1} \mathrm{H}$ NMR ( 270 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.15(9 \mathrm{H}, \mathrm{s}, \mathrm{TMS}), 1.18,1.28$ (each 3 H , each d, J = $\left.6.3 \mathrm{~Hz}, \mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.08(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.44(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=17.6$, $8.6 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}$ ), 2.58 ( $1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=17.6,3.4 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}), 4.08$ ( 1 H , dt , J $=8.6,3.4 \mathrm{~Hz}, \mathrm{H}-5), 4.11\left(1 \mathrm{H}, \mathrm{m}, \mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 5.14(2 \mathrm{H}$, m, H-1, H-4), 5.82 (2H, m, H-2, H-3); IR (KBr) 2971, 2181, 1744, 1373, 1236, 1034, $844 \mathrm{~cm}^{-1}$. Anal. Cal cd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{Si}$ : C, 61.90; H, 8.44. Found: C, 61.74; H, 8.45 .
( $2 \mathrm{R}^{*}, 3 \mathrm{~S}^{*}$ )-3-Acetoxy-2-(3-(trimethylsilyl)-2-propynyl)-5,6-dihydro-2H-pyran (11). To the solution of allyl acetate $19(228 \mathrm{mg}, 735 \mu \mathrm{~mol})$ in 2.5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 2.5 mL of $\mathrm{CH}_{3}-$ CN were successively added triethylsilane ( $590 \mu \mathrm{~L}, 3.69 \mathrm{mmol}$ ) and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(135 \mu \mathrm{~L}, 1.47 \mathrm{mmol})$. After stirring for 2 h , the reaction mixture was poured into a cooled sat. $\mathrm{NaHCO}_{3}$. The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\times 2)$. The extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude residue was purified by silica gel column chromatography (ether/hexane $=30: 70$ ) to give 11 ( 142 $\mathrm{mg}, 77 \%$ ). $[\alpha]^{25} \mathrm{D}+0.8$ (c $0.77, \mathrm{CHCl}_{3}$ ); ${ }^{1} \mathrm{H}$ NMR ( 270 MHz , $\mathrm{CDCl}_{3}$ ) $\delta 0.13$ (9H, s, TMS), 2.06 (3H, s, Ac), 2.48 ( 1 H , dd, J = $17,6.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}$ ), 2.56 ( $1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=17,5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}$ ), 3.66 ( 1 H , td, J $=7,5 \mathrm{~Hz}, \mathrm{H}-5), 4.19(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-1), 5.18(1 \mathrm{H}$, dddd, J $=$ 7, 4, 2.5, $2 \mathrm{~Hz}, \mathrm{H}-4$ ), 5.73 ( $1 \mathrm{H}, \mathrm{dq}, \mathrm{J}=10.5,2.5 \mathrm{~Hz}, \mathrm{H}-3$ ), 5.91 $(1 \mathrm{H}, \mathrm{dq}, \mathrm{J}=10.5,2 \mathrm{~Hz}, \mathrm{H}-2) ;{ }^{13} \mathrm{C}$ NMR $\left(67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $0.00,21.43,23.45,64.58,68.11,74.00,85.48,102.21,123.88$, 129.61, 170.28; IR (KBr) 3048, 2962, 2830, 1741, 1417, 1374, 1236, $1043 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Si}: \mathrm{C}, 61.87 ; \mathrm{H}, 7.99$. Found: C, 61.67; H, 8.04.
Disaccharide 20. To a mixture of silylacetylene 11 (47.7 $\mathrm{mg}, 189 \mu \mathrm{~mol})$ and arabinal $12(68.4 \mathrm{mg}, 241 \mu \mathrm{~mol})$ in 1.5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $\mathrm{TiCl}_{4}(25 \mu \mathrm{~L}, 228 \mu \mathrm{~mol})$ at $-20^{\circ} \mathrm{C}$. After stirring for 30 min at $-20^{\circ} \mathrm{C}$, the reaction mixture was poured into a cold mixture of sat. $\mathrm{NaHCO}_{3}$ aq. and sat. aq $\mathrm{NaK}(\mathrm{CH}-$ $(\mathrm{OH}) \mathrm{COO})_{2}$. The resulting mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ $(\times 2)$. The extracts were washed with brine, dried over $\mathrm{Na}_{2}-$ $\mathrm{SO}_{4}$, and concentrated. The crude mixture was purified by silica gel column chromatography (ether/hexane $=50: 50$ ) to give 20 ( $37.0 \mathrm{mg}, 54 \%$ ). $[\alpha]^{28} \mathrm{D}_{\mathrm{D}}+10.3$ (c $0.70, \mathrm{CHCl}_{3}$ ); ${ }^{1} \mathrm{H}$ NMR ( $270 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.19$ ( $9 \mathrm{H}, \mathrm{s}, \mathrm{Piv}$ ), 2.07 (3H, s, Ac), 2.50 ( 1 H , ddd, J $=17,7,2 \mathrm{~Hz}, \mathrm{H}-8 \mathrm{a}$ ), 2.59 ( $1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=17,5,2$ $\mathrm{Hz}, \mathrm{H}-8 \mathrm{~b}$ ), 3.67 ( $1 \mathrm{H}, \mathrm{td}$, J $=7,5 \mathrm{~Hz}, \mathrm{H}-9$ ), 3.76 ( 1 H , ddd, J = $13,2,1 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{a}), 4.18$ ( $1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=13,3.5 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{~b}$ ), 4.21 (2H, m, H-13), 4.92 ( $1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$ ), 5.01 ( $1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2$ ), 5.19 ( 1 H , $\mathrm{m}, \mathrm{H}-10), 5.74\left(1 \mathrm{H}, \mathrm{dq}, \mathrm{J}=10.5,2.5 \mathrm{~Hz}, \mathrm{H}-3^{*}\right), 5.87(1 \mathrm{H}$, dddd, $\left.\mathrm{J}=10,4.5,2.5,1 \mathrm{~Hz}, \mathrm{H}-11^{*}\right), 5.93(1 \mathrm{H}, \mathrm{dq}, \mathrm{J}=10.5,2.0 \mathrm{~Hz}$, H-4*), 6.02 ( $1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=10,4.5,1 \mathrm{~Hz}, \mathrm{H}-12^{*}$ ); IR (KBr) 2972, 2871, 2222, 1732, 1719, 1482, 1370, 1278, 1236, $1156 \mathrm{~cm}^{-1}$; MS(EI) m/z $362\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{6}$ : C, 66.28; H, 7.23. Found: C, 66.22; H, 7.37.

Acetylenecobalthexacarbonyl Complex 21. To a solution of acetylene $\mathbf{2 0}(44.5 \mathrm{mg}, 141 \mu \mathrm{~mol})$ in 2.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added a solution of $\mathrm{Co}_{2}(\mathrm{CO})_{8}(61.4 \mathrm{mg}, 174 \mu \mathrm{~mol})$ in 0.75 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature. After stirring for 2 h , the solvent was removed in vacuo. The residue was purified by silica gel column chromatography (ether/hexane $=40: 60$ ) to give a dark red oil 21 ( $71.5 \mathrm{mg}, 84 \%$ ). [ $\alpha]^{28} \mathrm{D}+168.5$ (c 0.10, $\mathrm{CHCl}_{3}$ ); ${ }^{1 \mathrm{H}} \mathrm{NMR}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.21$ (9H, s, Piv), 2.11 (3H, s, Ac), 2.98 ( $1 \mathrm{H}, \mathrm{dd}$, J = 16.5, $10 \mathrm{~Hz}, \mathrm{H}-8 \mathrm{a}$ ), 3.11 ( 1 H , dd, $\mathrm{J}=16.5,2.5 \mathrm{~Hz}, \mathrm{H}-8 \mathrm{~b}), 3.58-3.66(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9), 3.67(1 \mathrm{H}, \mathrm{dd}$, $\mathrm{J}=11.5,7 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{a}), 4.16(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-13), 4.28(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$
$11.5,5 \mathrm{~Hz}, \mathrm{H}-1 b), 5.23,5.25,5.33$ (each 1 H , each $\mathrm{m}, \mathrm{H}-2^{*}, \mathrm{H}-5^{*}$, H-10*), 5.75 ( $1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{*}$ ), $5.89(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=10.5,2.0 \mathrm{~Hz}$, H-11*), 5.96 ( $1 \mathrm{H}, \mathrm{dq}, \mathrm{J}=10.5,2.0 \mathrm{~Hz}, \mathrm{H}-12^{*}$ ), $6.04(1 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-4^{*}$ ); ${ }^{13} \mathrm{C}$ NMR ( $67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 20.90,27.00,36.62,38.66$, $64.13,65.27,68.95,73.99,76.63,92.69,96.91,124.45,125.37$, 129.52, 132.09, 170.60, 178.06, 199.77 (br); IR (KBr) 2975, 2934, 2874, 2092, 2053, 2013, 1734, 1481, 1372, 1278, 1234, 1153, 1091, $1032 \mathrm{~cm}^{-1}$; MS(FAB) m/z 649 ( $\mathrm{M}+\mathrm{H}^{+}$), 592 (M $2 \times C O), 564(M-3 \times C O), 536(M-4 \times C O), 508(M-5 \times C O)$, 480 (M $-6 \times \mathrm{CO}$ ); HRMS(FAB) calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{8} \mathrm{CO}_{2}, 536.0291$, found 536.0278 .

Acetylenecobalthexacarbonyl Complex 22. To a solution of $\mathrm{Piv}_{2} \mathrm{O}$ ( $100 \mu \mathrm{~L}, 493 \mu \mathrm{~mol}$ ) in 0.75 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added TfOH ( $25 \mu \mathrm{~L}, 283 \mu \mathrm{~mol}$ ) at $-20^{\circ} \mathrm{C}$ under $\mathrm{N}_{2}$. After stirring for 20 min at $-20^{\circ} \mathrm{C}$, to this mixture was added a solution of cobalt complex $21(33.0 \mathrm{mg}, 51.1 \mu \mathrm{~mol})$ in 1.5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ via cannula. After stirring for 1 h at $-20^{\circ} \mathrm{C}$, to the resulting dark red solution was added $300 \mu \mathrm{~L}$ of MeOH . The reaction mixture was poured into a cooled sat. $\mathrm{NaHCO}_{3}$ aq. and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\times 2)$. The extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo, and purified by silica gel column chromatography (ether/hexane $=40: 60$ ) to give dark red oil 22 ( $38.0 \mathrm{mg}, 98 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $270 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.19$, 1.20 (total 18 H , each s, Piv), 2.09 (3H, s, Ac), 2.84-3.07 ( 2 H , m, H-8), 3.57-3.69 (1H, m, H-9), 4.04 (dd, J = 11.5, $7.5 \mathrm{H}-1 \mathrm{a}$ ), 4.17 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{H}-13$ ), 4.27 (dd, J $=11.5,3.5 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{~b})$, [4.31 (dd, J = 11.5, $3.5 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{~b})$ ], 4.75 (1H, m, H-5), 5.20 ( $1 \mathrm{H}, \mathrm{m}$, H-10), 5.57 ( $1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2$ ), $5.73-6.00$ ( $4 \mathrm{H}, \mathrm{m}, \mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-11$, $\mathrm{H}-12$ ); ${ }^{13} \mathrm{C}$ NMR ( $67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 20.90,26.92,27.01,27.04$, $36.23,36.34,38.65,38.71,56.76,56.99,62.48,62.71,64.41$, 68.86, 70.47, 71.91, 71.99, 76.63, 80.25, 80.50, 89.58, 89.79, $95.65,95.88,124.31,129.46,129.68,131.25,131.68,131.89$, 132.29, 170.61, 177.20, 177.53, 177.99, 199.51 (br); IR (KBr) 2973, 2940, 2881, 2090, 2053, 2024, 1733, 1482, 1372, 1282, 1233, $1140 \mathrm{~cm}^{-1}$; MS(FAB) m/z 732.8 (M + H -MeOH ), 679.8 (M - 3×CO); HRMS(FAB) calcd for $\mathrm{C}_{31} \mathrm{H}_{25} \mathrm{O}_{13} \mathrm{CO}_{2} 733.0741$, found 733.0704 .

Acetylenecobalthexacarbonyl Complex 23. To a solution of cobalt complex 22 ( $152 \mathrm{mg}, 199 \mu \mathrm{~mol}$ ) in 1.5 mL of MeOH was added $\mathrm{K}_{2} \mathrm{CO}_{3}(21.0 \mathrm{mg}, 152 \mu \mathrm{~mol})$ at $0^{\circ} \mathrm{C}$. After warming up to room temperature, the reaction mixture was stirred for 30 min . The resulting mixture was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ aq. and extracted with $\mathrm{Et}_{2} \mathrm{O}(\times 2)$. The extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo, and purified by silica gel column chromatography (ether/ hexane $=50: 50$ ) to give a dark red oil 23 ( $125 \mathrm{mg}, 87 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $270 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.19,1.20,1.21$ (total 18 H , each s , Piv), 2.15-2.30 (1H, m, -OH ), 2.81 (dd, J = 15, $10 \mathrm{~Hz}, \mathrm{H}-8 \mathrm{a}$ ), 2.94 [(dd, J $=15,10 \mathrm{~Hz}, \mathrm{H}-8 \mathrm{a})$ ], $3.30-3.40$ ( $2 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{~b}, \mathrm{H}-9$ ), 3.41, 3.42 (total 3 H , each s, OMe), $4.00-4.15(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-1 \mathrm{a}$, $\mathrm{H}-10, \mathrm{H}-13$ ), 4.26 (dd, J $=11.5,3.5 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{~b}),[4.29(\mathrm{dd}, \mathrm{J}=$ $11.5,3.0 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{~b})$ ], 4.75 ( $1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$ ), 5.51 ( $1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2$ ), $5.71-$ $5.92(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-11, \mathrm{H}-12)$; ${ }^{33} \mathrm{C}$ NMR ( 67.8 MHz , $\mathrm{CDCl}_{3}$ ) $\delta 26.96,27.01,27.04,36.76,38.72,56.83,56.94,62.56$, 62.82, 64.51, 65.78, 67.41, 71.94, 72.07, 79.92, 79.98, 80.33, 80.51, 89.39, 96.43, 128.23, 130.84, 131.77, 132.08, 132.14, 177.41, 177.63, 178.22, 199.62 (br); IR (KBr) 3482 (br), 2974, 2939, 2873, 2090, 2051, 2022, 1734, 1482, 1287, 1165, 1146, $1029 \mathrm{~cm}^{-1}$; MS(FAB) m/z 691.1 (M + H - MeOH), 638.1 (M $3 \times C O$ ); $\mathrm{HRMS}(F A B)$ calcd for $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{O}_{12} \mathrm{CO}_{2}$ 691.0635, found 691.0618.
endo-Acetylenecobalthexacarbonyl Cyclic Ether 24. To a solution of cobalt complex $23(6.5 \mathrm{mg}, 9.02 \mu \mathrm{~mol})$ in 1.3 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(0.1 \mathrm{M}$ in 1,2-dichloromethane, $70 \mu \mathrm{~L}, 7.58 \mu \mathrm{~mol}$ ) at $0^{\circ} \mathrm{C}$. After stirring for 40 min at $0^{\circ} \mathrm{C}$, the reaction mixture was quenched by sat. aq $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(\times 1)$. The extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo, and purified by silica gel column chromatography (ether/hexane $=25: 75$ ) to give a dark red oil 24 ( $4.9 \mathrm{mg}, 79 \%$ ). [ $\alpha]^{29}{ }_{\mathrm{D}}-309.0$ (c 0.11, $\mathrm{CHCl}_{3}$ ); ${ }^{1} \mathrm{H}$ NMR ( $270 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.18,1.21$ (each, 9 H , each s, Piv), 2.86-2.99 (1H , m, H-8a), 3.45-3.58 (2H, m, H-8b, H-9), 3.99-4.08 (1H , m, H-10), 4.04 ( $1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.5,7.5 \mathrm{~Hz}$, $\mathrm{H}-1 \mathrm{a}), 4.14(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-13), 4.29$ ( $1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.5,3 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{~b}$ ), $5.13(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4 \mathrm{~Hz}, \mathrm{H}-5), 5.61(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 5.76(1 \mathrm{H}, \mathrm{m}$,
$\mathrm{H}-11^{*}$ ), 5.87 ( $1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=16,5 \mathrm{~Hz}, \mathrm{H}-3$ ), $5.89-5.96(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{H}-12^{*}\right), 5.94(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=16,4 \mathrm{~Hz}, \mathrm{H}-4) ;{ }^{13} \mathrm{C}$ NMR ( 67.8 MHz , $\mathrm{CDCl}_{3}$ ) $\delta 27.00,27.03,31.49,38.72,38.75,64.97,64.99,70.82$, 75.38, 78.88, 80.97, 91.95, 100.22, 124.97, 127.05, 128.31, 132.15, 177.25, 178.09, 199.04 (br); IR (KBr) 2975, 2935, 2972, 2841, 2094, 2051, 2026, 1735, 1577, 1481, 1280, $1146 \mathrm{~cm}^{-1}$; MS(FAB) m/z 691.2 ( $\mathrm{M}+\mathrm{H}$ ), 606.2 ( M - $3 \times C O$ ), 578 ( M $4 \times \mathrm{CO}$ ); HRMS(FAB) cal cd for $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{O}_{12} \mathrm{CO}_{2}$ 691.0635, found 691.0621.
(2R,5S)-AB Segment 25. To a solution of endo-acetylenecobalt complex $\mathbf{2 4}(5.3 \mathrm{mg}, 7.36 \mu \mathrm{~mol})$ in 1.0 mL of PhH was added Wilkinson catalyst ( $0.7 \mathrm{mg}, 0.76 \mu \mathrm{~mol}$ ). After stirring for 5 h at $60^{\circ} \mathrm{C}$ under $100 \mathrm{~kg} / \mathrm{cm}^{2}$, the reaction mixture was filtered, concentrated in vacuo, and purified by silica gel column chromatography (ether/hexane = 30:70) to give 25 (2.5 $\mathrm{mg}, 84 \%)$. $\mathrm{Mp} 96-96.5^{\circ} \mathrm{C} ;[\alpha]^{26} \mathrm{D}-54.6$ (c $0.75, \mathrm{CHCl}_{3}$ ); ${ }^{1} \mathrm{H}$ NMR ( $270 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.18,1.21$ (each 9 H , each s, Piv), $2.38(1 \mathrm{H}, \mathrm{ddq}, \mathrm{J}=15.9,10.6,3 \mathrm{~Hz}, \mathrm{H}-8 \mathrm{a}), 2.59(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=$ $15.9,8,3.9 \mathrm{~Hz}, \mathrm{H}-8 \mathrm{~b}$ ), 3.24 (1H, ddd, J $=10.6,8.9,3.9 \mathrm{~Hz}$, $\mathrm{H}-9), 3.98(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-10), 4.08(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.8,7.2 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{a})$, $4.15(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-13), 4.25$ ( $1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.8,3.5 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{~b}), 4.58$ ( $1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$ ), $5.54(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 5.66-5.91(5 \mathrm{H}, \mathrm{m}, \mathrm{H}-3, \mathrm{H}-6$, H-7, H-11, H-12), 5.86 ( $1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=15.5,4.8 \mathrm{~Hz}, \mathrm{H}-4$ ); ${ }^{13} \mathrm{C}$ NMR $\left(67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 27.08,34.63,38.77,64.86,65.52,70.93$, 74.65, 79.39, 124.98, 127.76, 134.29, 177.44, 178.14; IR (KBr) 2975, 1735, 1482, 1280, 1142, $1106 \mathrm{~cm}^{-1}$; MS(EI) m/z $406\left(\mathrm{M}^{+}\right)$, 304 (M ${ }^{+}$- PivOH). Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{6}$ : C, 67.98; $\mathrm{H}, 8.37$. Found: C, 67.99; H, 8.60.
(2S,5S)-AB Segment 27. ( $2 \mathrm{~S}, 5 \mathrm{~S}$ )-AB Fragment 27 was derived from 11 and $D-x y l a l 13$ as 25. [ $\alpha]^{26}$ D -17.2 (c 0.47, $\mathrm{CHCl}_{3}$ ); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.18,1.21$ (each 9 H , each s, Piv), 2.38 ( 1 H , ddq, J = 16, 10.5, $3 \mathrm{~Hz}, \mathrm{H}-8 \mathrm{a}$ ), 2.59 ( 1 H , ddd, $\mathrm{J}=16,8,3.6 \mathrm{~Hz}, \mathrm{H}-8 \mathrm{~b})$, 3.24 ( 1 H , ddd, J $=10.5,8.4,3.6 \mathrm{~Hz}$, $\mathrm{H}-9), 3.98(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-10), 4.08$ ( $1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.8,7 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{a}$ ), $4.15(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-13), 4.24$ ( $1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.8,3.5 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{~b}), 4.59$ ( $1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$ ), 5.54 ( 1 H, ddd, J $=7,6.5,3.5 \mathrm{~Hz}, \mathrm{H}-2$ ), $5.65-$ 5.88 ( $5 \mathrm{H}, \mathrm{m}, \mathrm{H}-3, \mathrm{H}-6, \mathrm{H}-7, \mathrm{H}-11, \mathrm{H}-12$ ), 5.88 ( $1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ $15.5,4.8 \mathrm{~Hz}, \mathrm{H}-4) ;{ }^{13} \mathrm{C}$ NMR ( $67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 27.06,34.63$, 38.71, 38.77, 64.79, 65.49, 71.03, 74.65, 77.54, 79.29, 125.03, $127.71,127.82,134.24,134.78,177.44,178.12$; IR ( KBr ) 2967, 1729, 1482, 1286, 1146, $1020 \mathrm{~cm}^{-1}$; MS(EI) m/z $406\left(\mathrm{M}^{+}\right), 304$ (M+ - PivOH); EI HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{6} 406.2355$, found 406.2340.
(2R*,3S*)-3-(1'-Ethoxyethoxy)-2-(2-propynyl)-2, 3-dihy-dro-6H-pyran (35). To a solution of allyl acetate $\mathbf{1 1}$ ( 142 mg , $563 \mu \mathrm{~mol})$ in 4.0 mL of MeOH was added $\mathrm{K}_{2} \mathrm{CO}_{3}(190 \mathrm{mg}, 1.37$ mmol ). After stirring for 2 h , to the reaction mixture was added sat. $\mathrm{NH}_{4} \mathrm{Cl}$ at $0^{\circ} \mathrm{C}$. The resulting mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(\times 2)$. The extracts was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The crude residue was purified by silica gel column chromatography (ether/hexane $=65: 35$ ) to give allyl alcohol ( $78 \mathrm{mg}, 100 \%$ ). $[\alpha]^{25}{ }_{\mathrm{D}}+0.3\left(\mathrm{c} 1.94, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.90$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz},-\mathrm{OH}), 2.08(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=2.7 \mathrm{~Hz}, \mathrm{H}-8), 2.60$ ( 1 H, ddd, $\mathrm{J}=16.9,6.1,2.7 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}$ ), 2.67 ( $1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=2.7$, $5.2,16.9 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}$ ), 3.45 ( 1 H , ddd, J $=7.6,6.1,5.2 \mathrm{~Hz}, \mathrm{H}-5$ ), 4.19 (3H, m, H-1, H-4), 5.84 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2, \mathrm{H}-3$ ); IR (KBr) 3407 (br), 3041, 2889, 1653, 1636, 1541, 1419, 1375, 1127, 1084, $1032 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{2}$ : $\mathrm{C}, 69.53 ; \mathrm{H}, 7.30$. Found: C, 69.52; H, 7.50.

To the sol ution of this allyl al cohol ( $236 \mathrm{mg}, 1.71 \mathrm{mmol}$ ) in 5.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was successively added EVE ( $350 \mu \mathrm{~L}$, 3.66 mmol) and PPTS ( $31 \mathrm{mg}, 0.12 \mathrm{mmol}$ ). After stirring for 6 h , to the reaction mixture was added sat. $\mathrm{NaHCO}_{3}$. The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\times 2)$. The extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude residue was purified by silica gel column chromatography (ether/hexane = 17:83) to give 35 ( $364 \mathrm{mg}, 100 \%$ ). ${ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.22(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{OCH}-$ $\left.\left(\mathrm{CH}_{3}\right) \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.34,1.35$ (total 3 H , each d, J $=5.2 \mathrm{~Hz}, \mathrm{OCH}$ $\left(\mathrm{CH}_{3}\right) \mathrm{OCH}_{2} \mathrm{CH}_{3}$ ), 2.04, 2.06 (total 1 H , each $\mathrm{t}, \mathrm{J}=2.5 \mathrm{H}, \mathrm{H}-8$ ), 2.52-2.76 (2H, m, H-6), $3.53\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}\left(\mathrm{CH}_{3}\right) \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, 3.67 (1H , m, H-5), 4.14 (1H , m, H-4), 4.21 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{H}-1$ ), 4.81, 4.87 (total 1 H , each $\left.\mathrm{q}, \mathrm{J}=5.2 \mathrm{~Hz}, \mathrm{OCH}\left(\mathrm{CH}_{3}\right) \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 5.86$ (2H, m, H-2, H-3); ${ }^{13} \mathrm{C}$ NMR ( $67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 15.1,20.3$,
20.5, 21.7, 60.6, 60.9, 65.28, 65.31, 68.4, 69.7, 70.1, 71.1, 74.8, 74.9, 80.4, 80.7, 98.3, 100.8, 125.8, 127.1, 127.6, 128.0; IR (KBr) 2980, 2931, 2913, 2887, 1717, 1653, 1541, 1508, 1457, 1390, 1128, 1083, 1053, $1034 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{2}: \mathrm{C}$, 68.54; H, 8.63. Found: C, 68.42; H, 8.83.
(2R*,3S*)-3-(1'-Ethoxyethoxy)-2-(5-hydroxy-1-iodoocta-1,3-dien-6-ynyl)-2,3-di hydro-6H-pyran (37). Tothe solution of acetylene $35(72.1 \mathrm{mg}, 343 \mu \mathrm{~mol})$ in THF ( 2.0 mL ) was added n-BuLi ( 1.6 M in hexane, $260 \mu \mathrm{~L}, 412 \mu \mathrm{~mol}$ ) at $-78^{\circ} \mathrm{C}$ under $\mathrm{N}_{2}$. After stirring at $0{ }^{\circ} \mathrm{C}$ for 30 min , this reaction mixture was recooled to $-78^{\circ} \mathrm{C}$. At this temperature, to this solution was added $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(0.54 \mathrm{M}$ in THF, $630 \mu \mathrm{~L}, 378 \mu \mathrm{~mol})$. After stirring for 10 min , aldehyde 36 ( $107 \mathrm{mg}, 515 \mu \mathrm{~mol}$ ) in THF $(2.0 \mathrm{~mL})$ was added. After additional stirring for 20 min , the reaction mixture was poured into a cooled sat. $\mathrm{NaHCO}_{3}$ and extracted by ether ( $\times 3$ ). The extracts were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation, concentration, and purification by silica gel column chromatography gave colorless adduct ( $92.0 \mathrm{mg}, 220 \mu \mathrm{~mol}, 63 \%$ ) which recei ved next reaction immediately because of instability. The adduct was dissolved in $\mathrm{MeOH}(5.0 \mathrm{~mL})$, and to the resulting solution was added PPTS ( 3.0 mg ). After stirring for 1 h , to this reaction mixture was added sat. $\mathrm{NaHCO}_{3}$ at $0{ }^{\circ} \mathrm{C}$. Extraction with ether ( $\times 3$ ) and evaporation gave crude residue which was purified by silica gel column chromatography (ethyl acetate/hexane $=1: 1$ ) to afford colorless oil $37(65.6 \mathrm{mg}, 190 \mu \mathrm{~mol}, 88 \%)$. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 2.65-2.74(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-8), 3.40-3.50(1 \mathrm{H}$, m, H-9), 4.11-4.20 (3H, m, H-10, H-13), 4.90, 4.98 (total 1H, each $\mathrm{m}, \mathrm{H}-5$ ), 5.76-5.91 (2H, m, H-11, H-12), 6.02-6.10, 6.296.47, 6.55-6.65 (total 3H, each m, H-2, H-3, H-4), 6.76, 6.78, 7.04, 7.07 (total 1 H , each d, J $=11 \mathrm{~Hz}, 10 \mathrm{~Hz}, 14 \mathrm{~Hz}, 14.5 \mathrm{~Hz}$, respectively, $\mathrm{H}-1$ ); IR (KBr) 3375 (br), 2882, 2843, 2219, 1669, 1613, 1417, 1259, 1120, 1079, 1029, 977, 810, $696 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}_{3}$ : $\mathrm{C}, 45.11 ; \mathrm{H}, 4.37$. Found: $\mathrm{C}, 45.11 ; \mathrm{H}, 4.47$.

Acetylene Biscobalthexacarbonyl Complex 38. To the solution of acetylene $37(26.6 \mathrm{mg}, 76.8 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0$ mL ) was added a solution of $\mathrm{CO}_{2}(\mathrm{CO})_{8}(50 \mathrm{mg}, 146 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After stirring for 1 h at room temperature, the reaction mixture was concentrated in vacuo. Purification by silica gel column chromatography (ethyl acetate/ hexane $=1: 2$ ) gave a dark red oil 38 ( $48.5 \mathrm{mg}, 76.7 \mu \mathrm{~mol}$, $100 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 2.95-3.17(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9)$, 3.22-3.45, 3.45-3.66 (each 1 H , each $\mathrm{m}, \mathrm{H}-8$ ), 3.95-4.30 (3H, m, H-10, H-13), 5.26-5.36 (1H, m, H-5), 5.76-5.94 (2H, m, H-11, H-12), 5.36-5.48, 6.03-6.17, 6.27-6.47, 6.48-6.65, 6.69-6.82, 6.93-7.14 (total 4H, each m, H-1, H-2, H-3, H-4). All peaks are broadened, due to the paramagnetic susceptibility of cobalt; IR (KBr) 3402 (br), 2930, 2889, 2854, 2091, 2049, 2017, 1602, 1117, 1078, 1027, 979, 701, $518 \mathrm{~cm}^{-1}$; MS(FAB) $\mathrm{m} / \mathrm{z} 631(\mathrm{M}-\mathrm{H}), 615\left(\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right), 604(\mathrm{M}-\mathrm{CO}), 576(\mathrm{M}$ $-2 \times C O), 548(M-3 \times C O), 492(M-5 \times C O), 464(M-$ $6 \times \mathrm{CO}$ ); $\mathrm{HRMS}(\mathrm{FAB})$ calcd for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{9} \mathrm{CO}_{2}$ 630.8479, found 630.8330.

Cyclic Acetylenecobalthexacarbonyl Complex 39. To the solution of cobalt complex $38(29.2 \mathrm{mg}, 46.2 \mu \mathrm{~mol})$ in 30 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (degassed $\times 3$ ) was added CSA ( $21.4 \mathrm{mg}, 92.4$ $\mu \mathrm{mol}$ ) at $0^{\circ} \mathrm{C}$. After stirring for 40 min at $0^{\circ} \mathrm{C}$, the reaction mixture was poured on silica gel column. Purification by column chromatography (ether/hexane $=1: 4$ ) gave a dark red oil 39 ( $25.5 \mathrm{mg}, 41.5 \mu \mathrm{~mol}, 90 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 2.86-3.00(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9), 3.44-3.62(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-8), 3.98-4.20$ (3H, m, H-10, H-13), 5.05-5.23 (1H, m, H-5), 5.70-5.98 (3H, m, H-4*, H-11, H-12), 6.27-6.48, 6.49-6.65, 6.72-6.86, 6.967.13 (total 3 H , each $\mathrm{m}, \mathrm{H}-1^{*}, \mathrm{H}-2^{*}, \mathrm{H}-3^{*}$ ). All peaks are broadened, due to the paramagnetic susceptibility of cobalt. ${ }^{13} \mathrm{C}$ NMR $\left(75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 38.8,65.0,75.5,75.7,79.0,80.3$, 81.2, 127.0, 128.5, 130.4, 130.9, 132.5, 136.5, 144.3196.8-199.8 (br); IR (KBr) 2934, 2858, 2093, 2051, 2034, 1732, 1579, 1264, 1120, 1089, 1053, 1012, 982, 646, $515 \mathrm{~cm}^{-1}$; MS(FAB) m/z 615 $(M+H), 586(M-C O), 576(M-2 \times C O), 558(M-2 \times C O)$, $530(\mathrm{M}-3 \times \mathrm{CO}), 502(\mathrm{M}-4 \times \mathrm{CO}), 474(\mathrm{M}-5 \times \mathrm{CO}), 446$ (M $-6 \times C O)$; $\mathrm{HRMS}(\mathrm{FAB})$ cal cd for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{O}_{7} \mathrm{CO}_{2} 585.8371$, found 585.8355.
(5S)-Gambiertoxin AB Segment 5. The mixture of cobalt complex 39 ( $76.5 \mathrm{mg}, 126 \mu \mathrm{~mol}$ ) and tributyltin hydride ( 400
$\mu \mathrm{L}, 1.51 \mathrm{mmol}$ ) in benzene ( 3.5 mL ) was degassed ( $\times 3$ ) and stirred at $65^{\circ} \mathrm{C}$. After 1 h , the reaction mixture was cooled and concentrated in vacuo. The residue was purified by silica gel column chromatography to afford col orless oil 5 ( 20.5 mg , $10.0 \mu \mathrm{~mol}, 81 \%$ ). $[\alpha]^{29}{ }_{\mathrm{D}}-9.2$ (c $0.45, \mathrm{CHCl}_{3}$ ); ${ }^{1} \mathrm{H}$ NMR ( 400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.38(1 \mathrm{H}, \mathrm{ddq}, \mathrm{J}=16,10.5,3 \mathrm{~Hz}, \mathrm{H}-8 \mathrm{a}), 2.61$ ( $1 \mathrm{H}, \operatorname{ddd}, \mathrm{J}=16,8,3.5 \mathrm{~Hz}, \mathrm{H}-8 \mathrm{~b}$ ), 3.27 ( $1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=10.5,8$, $3.5 \mathrm{~Hz}, \mathrm{H}-9), 4.00(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=8,3 \mathrm{~Hz}, \mathrm{H}-10), 4.08-4.25(2 \mathrm{H}$, m, H-13), 4,63 (1H, m, H-5), 5.10-5.15 (1H, m, H-1a), 5.195.26 (1H, m, H-1b), 5.65-5.90 (5H, m, H-4*, H-6, H-7, H-11, $\mathrm{H}-12$ ), 6.28-6.40 (2H, m, H-2, H-3*); ${ }^{13} \mathrm{C}$ NMR ( 75.4 MHz , $\mathrm{CDCl}_{3}$ ) $\delta 34.5,65.5,74.8,78.2,79.1,117.8,127.3,127.7,127.9$, 131.5, 133.9, 134.5, 136.5; IR (KBr) 2931, 2858, 1733, 1288, 1139, 1108, 1072, 1020, 902, $676 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2}: \mathrm{C}, 76.44 ; \mathrm{H}, 7.89$. Found: C, $76.56 ; \mathrm{H}, 7.62$.
Methyl 6-Deoxyiodo-tri-O-benzyl-D-glucopyranoside (45). To a solution of the alcohol $44(770 \mathrm{mg}, 1.66 \mathrm{mmol})$ in PhH ( 18 mL ) were successively added imidazole ( $282 \mathrm{mg}, 415$ $\mathrm{mmol}), \mathrm{PPh}_{3}(1,08 \mathrm{~g}, 415 \mathrm{mmol})$, and iodine ( $841 \mathrm{mg}, 3.32$ $\mathrm{mmol})$. After stirring at room temperature for 3 h , the reaction mixture was quenched with sat. $\mathrm{Na}_{2} \mathrm{SO}_{3}$ and extracted with ether ( $\times 3$ ). The extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. Purification of the residue by silica gel column chromatography (ether/ hexane = 30: 70) gave col orless oil 45 ( $910 \mathrm{mg}, 96 \%$ ). $[\alpha]^{28} \mathrm{D}$ +34.1 (c $2.33, \mathrm{CHCl}_{3}$ ); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 3.29$ ( 1 H , dd, J = 11, $6.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}$ ), $3.34(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9.0 \mathrm{~Hz}, \mathrm{H}-4), 3.42$ (3H, s, OMe), 3.41-3.48 (1H, m, H-5), 3.45 ( $1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9.5 \mathrm{~Hz}$, $\mathrm{H}-3), 3.47$ ( 1 H , dd, J $=11,2.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}$ ), 3.54 ( $1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ $9.5,3.4 \mathrm{~Hz}, \mathrm{H}-2), 4.02(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.5,9 \mathrm{~Hz}, \mathrm{H}-3), 4.61(1 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=3.4 \mathrm{~Hz}, \mathrm{H}-1), 4.66\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.68$ $\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.81\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.8 \mathrm{~Hz}, \mathrm{CH}_{2^{-}}\right.$ $\mathrm{Ph}), 4.81\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.94(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.8$ $\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{Ph}$ ), $4.99\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 7.30-7.39(15 \mathrm{H}$, m, Ph); IR (KBr) 3063, 3030, 2906, 1952, 1497, 1455, 1360, 1198, 1089(br), 738, 696. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{O}_{5}$ : C, 58.52; H, 5.44. Found: C, 58.51; H, 5.46.

6-Deoxyiodo-tri-O-benzyl-1,5-D-gluconolactone (46). To a solution of $45(75.8 \mathrm{~g}, 146 \mathrm{mmol})$ in 1.00 L of acetic anhydride was added 100 mL of TFA at $0^{\circ} \mathrm{C}$. After removal of the icewater bath, the reaction mixture was stirred for 1 day at room temperature. The resulting mixture was poured into cooled aq $\mathrm{NaHCO}_{3}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(\times 3)$. The extracts were washed with $\mathrm{H}_{2} \mathrm{O}(\times 2)$, aq $\mathrm{NaHCO}_{3}(\times 1)$, and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The crude oil was suspended in 1.20 L of AcOH and 0.50 L of $\mathrm{H}_{2} \mathrm{O}$. The suspension was turned to clear solution at $100{ }^{\circ} \mathrm{C}$. After stirring for 1 day at $100^{\circ} \mathrm{C}$, the reaction mixture was extracted with ether-hexane $(1: 1)(\times 3)$. The extracts were washed with $\mathrm{H}_{2} \mathrm{O}(\times 2), \mathrm{NaHCO}_{3}$ aq. $(\times 1)$, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The crude oil was dissolved in 300 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. In another three-necked flask, to a solution of $(\mathrm{COCI})_{2}(16.0 \mathrm{~mL}, 222 \mathrm{mmol})$ in 300 mL of $\mathrm{CH}_{2}-$ $\mathrm{Cl}_{2}$ was dropwise added a solution of DMSO ( $26 \mathrm{~mL}, 444 \mathrm{mmol}$ ) in 400 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78{ }^{\circ} \mathrm{C}$. After stirring for 20 min , to this mixture was dropwise added a solution of crude substrate at $-78{ }^{\circ} \mathrm{C}$. After stirring for 30 min , triethylamine ( 67 mL , 555 mmol ) was dropwise added to this mixture at $-78^{\circ} \mathrm{C}$. After raising the temperature to $0^{\circ} \mathrm{C}$, the resulting mixture was poured into $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\times 3)$. The extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (ether/hexane $=25: 75$ ) to give colorless oil 46 ( $46.0 \mathrm{~g}, 62 \%$ in three steps). $[\alpha]^{28} \mathrm{D}+73.6$ (c $0.73, \mathrm{CHCl}_{3}$ ); ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.44(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11,4 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a})$, 3.53 ( 1 H , dd, J $=11,3.6 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}$ ), 3.76 ( $1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9,6.2$ $\mathrm{Hz}, \mathrm{H}-4), 3.97(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=6.2,5.5 \mathrm{~Hz}, \mathrm{H}-3), 4.13(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $5.5 \mathrm{~Hz}, \mathrm{H}-2), 4.18(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=9,4 \mathrm{~Hz}, \mathrm{H}-5), 4.53(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $11.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}$ ), $4.62\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.64(1 \mathrm{H}$, $\left.\mathrm{d}, \mathrm{J}=11.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.68\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right)$, $4.74\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.96(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.5 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{Ph}$ ), 7.24-7.41 (15H, m, Ph); IR (KBr) 3064, 3032, 2933, 2879, 1760, 1498, 1456, 1365, 1214, 1117, 1090, 1070, 738, 698 $\mathrm{cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{O}_{5} \mathrm{I}: \mathrm{C}, 58.08 ; \mathrm{H}, 4.87$. Found: C, 58.20; H, 4.74.
(2S*,3S*,4R*,5S*,6S*)-6-(I odomethyl)-2-(2-propenyl)-3,4,5-tris(benzyloxy)tetrahydropyran (47). To a solution of $46(37.0 \mathrm{~g}, 66.3 \mathrm{mmol})$ in 1.00 L of $\mathrm{Et}_{2} \mathrm{O}$ was added a solution of allylmagnesium bromide ( 1.0 M in ether, $80 \mathrm{~mL}, 80 \mathrm{mmol}$ ) at $-78^{\circ} \mathrm{C}$. After stirring for 30 min , the reaction mixture was poured into a solution of cold sat. aq $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(\times 3)$. The extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was dissolved in 800 mL of $\mathrm{CH}_{3} \mathrm{CN}$. To this solution were added triethylsiIane ( $21 \mathrm{~mL}, 131 \mathrm{mmol}$ ) and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(7.1 \mathrm{~mL}, 77.2 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After stirring for 30 min , the reaction mixture was poured into cool ed sat. aq $\mathrm{NaHCO}_{3}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(\times 3)$. The extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by silica gel column chromatography (ether/hexane $=25: 75$ ) to give 47 ( $28.0 \mathrm{~g}, 72 \%$ in two steps). Mp 79.5-80 ${ }^{\circ} \mathrm{C}$; $[\alpha]^{30} \mathrm{D}+23.3$ (c 2.04, $\mathrm{CHCl}_{3}$ ); ${ }^{1 \mathrm{H}} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.31(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=15,7$ $\mathrm{Hz}, \mathrm{H}-3 \mathrm{a}$ ), 2.58 ( $1 \mathrm{H}, \mathrm{dddt}, \mathrm{J}=15,6.5,3,1.5 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{~b}$ ), 3.03 ( $1 \mathrm{H}, \mathrm{ddd}$, J $=9.5,6,3 \mathrm{~Hz}, \mathrm{H}-4$ ), 3.29-3.45 (3H, m, H-5, H-8, H-9a), $3.41(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9.5 \mathrm{~Hz}, \mathrm{H}-7), 3.49(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11,3$ $\mathrm{Hz}, \mathrm{H}-9 \mathrm{~b}), 3.73(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9.5 \mathrm{~Hz}, \mathrm{H}-6), 4.66(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.7$ $\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.74\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.88(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $\left.=10.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.90\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.93(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.6$ $\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 5.07-5.15(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-1), 7.26-7.37$ ( $15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$ ); IR (KBr) 3031, 2904, 2864, 1497, 1455, 1361, 1210, 1065(br), 915, 735, 697. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{O}_{4}$ : C, 61.63; H, 5.69. Found: C, 61.62; H, 5.48 .
(2S*,3S*,4R*,5S*,6S*)-2-(3-Hydroxypropyl)-5-(iodometh-yl)-3,4,5-tris(benzyloxy)tetrahydropyran (49). To a solution of 47 ( $337 \mathrm{mg}, 577 \mu \mathrm{~mol}$ ) in 7.0 mL of THF was added a solution of diborane ( 1.0 M in THF, $1.0 \mathrm{~mL}, 1.00 \mathrm{mmol}$ ) at 0 ${ }^{\circ} \mathrm{C}$. After stirring for 1 h , to the reaction mixture was successively added 1.0 mL of $\mathrm{EtOH}, 2.0 \mathrm{~mL}$ of $2.5 \mathrm{~N} \mathrm{aq} \mathrm{NaOH}$, and 2.0 mL of $30 \%$ aq $\mathrm{H}_{2} \mathrm{O}_{2}$. After stirring for 30 min , the reaction mixture was poured into cooled sat. aq $\mathrm{Na}_{2} \mathrm{SO}_{3}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(\times 3)$. The extracts was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by silica gel column chromatography (ether/hexane $=70: 30$ ) to give 49 ( $298 \mathrm{mg}, 86 \%$ ). Mp 118-118.5 ${ }^{\circ} \mathrm{C}$; $[\alpha]^{27} \mathrm{D}$ +11.6 (c 0.48, $\mathrm{CHCl}_{3}$ ); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.48(1 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-3 \mathrm{a}), 1.67-1.79(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 1.90-2.01(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \mathrm{~b})$, 3.08 (1H , ddd, J = 9, 6, $2.5 \mathrm{~Hz}, \mathrm{H}-4$ ), 3.28 ( $1 \mathrm{H}, \mathrm{dd}$, J = 10.6, $6 \mathrm{~Hz}, \mathrm{H}-9 \mathrm{a}), 3.26-3.36(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7), 3.39(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9 \mathrm{~Hz}$, $\mathrm{H}-5$ ), 3.48 ( $1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.6,2.5 \mathrm{~Hz}, \mathrm{H}-9 \mathrm{~b}), 3.67(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=6$ $\mathrm{Hz}, \mathrm{H}-1), 3.73(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9 \mathrm{~Hz}, \mathrm{H}-6), 4.66,4.73,4.90,4.91$ (each 1 H , each d, J $=10.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}$ ), 4.88, 4.92 (each 1 H , each d, J $\left.=10.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 7.26-7.38(15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \mathrm{IR}(\mathrm{KBr})$ 3389 (br), 3033, 3013, 2859, 1454, 1356, 1130, $1059 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{O}_{5}$ : C, $59.79 ; \mathrm{H}, 5.86$. Found: C, 59,$76 ; \mathrm{H}$, 5.91 .
(2S*,3S*,4R*,5S*,6S*)-2-(3-p-Toluenesulfonyl)-5-(iodo-methyl)-3,4,5-trihydroxytetrahydropyran (51). To a solution of $49(116 \mathrm{mg}, 193 \mu \mathrm{~mol})$ in 4.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added pyridine ( $200 \mu \mathrm{~L}, 2.48 \mathrm{mmol}$ ) and $\mathrm{TsCl}(108 \mathrm{mg}, 568 \mu \mathrm{~mol})$ at $0^{\circ} \mathrm{C}$. After stirring for 1 day at room temperature, the reaction mixture was poured into cooled sat. aq $\mathrm{NaHCO}_{3}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(\times 3)$. The extracts was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by silica gel column chromatography (ether/hexane $=25: 75$ ) to give tosylate 50 ( $98.0 \mathrm{mg}, 67 \%$ ). Mp 105-105.5 ${ }^{\circ} \mathrm{C} ;[\alpha]^{27} \mathrm{D}+9.5\left(\mathrm{c} 0.27, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta$ $1.40-1.47(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \mathrm{a}), 1.68-1.78$ (1H, m, H-3b), 1.82-1.91 $(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 2.42\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{3}\right), 2.99(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4), 3.15-$ 3.22 (3H, m, H-5, H-8, H-9a), 3.32 ( $1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9.0 \mathrm{~Hz}, \mathrm{H}-7$ ), $3.42(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.3,2.5 \mathrm{~Hz}, \mathrm{H}-9 \mathrm{~b}), 3.66(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6), 4.06$ ( $2 \mathrm{H}, \mathrm{m}, \mathrm{H}-1$ ), 4.59, 4.70, 4.85, 4.91 (each 1 H , each d, J $=10.5$ $\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{Ph}$ ), 4.87, 4.90 (each 1 H , each d, J $=11.0 \mathrm{~Hz}, \mathrm{CH}_{2^{-}}$ Ph), 7.26-7.36 (17H, m, $\mathrm{CH}_{2} \mathrm{Ph}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}$ ), $7.78(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $8.0 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}$ ). Anal. Calcd for $\mathrm{C}_{37} \mathrm{H}_{41} \mathrm{O}_{7} \mathrm{IS}: \mathrm{C}, 58.73$; H, 5.46. Found: C, 58.56; H, 5.50.

To a solution of the tosylate 50 ( $135 \mathrm{mg}, 174 \mu \mathrm{~mol}$ ) in 4.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added EtSH ( $250 \mu \mathrm{~L}, 3.31 \mathrm{mmol}$ ) and $\mathrm{BF}_{3}$. $\mathrm{OEt}_{2}(250 \mu \mathrm{~L}, 2.61 \mathrm{mmol})$ at $-78{ }^{\circ} \mathrm{C}$. After being stirred overnight at room temperature, the reaction mixture was poured into cooled sat. aq $\mathrm{NaHCO}_{3}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$
$(\times 3)$. The extracts were washed with brine, dried over $\mathrm{Na}_{2}-$ $\mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by silica gel column chromatography (ethyl acetate/hexane $=75$ : 25) to give 51 ( $78.4 \mathrm{mg}, 90 \%$ ). $[\alpha]^{28} \mathrm{D}+6.1$ (c $0.77, \mathrm{CHCl}_{3}$ ); ${ }^{1 \mathrm{H}}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.45-1.57$ ( $1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \mathrm{a}$ ), 1.72-1.89 ( $1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \mathrm{~b}$ ), $1.89-2.03(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 2.45\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{3}\right)$, 3.06 (1H, m, H-4), 3,18-3.27 (2H, m, H-5, H-9a), 3.29 ( $1 \mathrm{H}, \mathrm{t}$, $\mathrm{J}=9.0 \mathrm{~Hz}, \mathrm{H}-7), 3.47-3.55(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6, \mathrm{H}-9 \mathrm{~b}), 4.03-4.17$ ( $2 \mathrm{H}, \mathrm{m}, \mathrm{H}-1$ ), $7.36\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right), 7.79(2 \mathrm{H}, \mathrm{d}$, $\mathrm{J}=8.4 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}$ ); IR (KBr) 3341 (br), 2964, 2923, 2904, 2854, 1597, 1351, 1174, 1093, $946 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{O}_{7} \mathrm{~S}: \mathrm{C}, 39.52 ; \mathrm{H}, 4.77$. Found: C, 39.39; H, 4.83.
(2S*,3S*,4R*,4aS*,8aS*)-3,4-Dihydroxy-2-(iodomethyl)-1,4-dioxabicyclo[4.0.4]octane (52). To a solution of 51 (217 $\mathrm{mg}, 446 \mu \mathrm{~mol}$ ) in 16.0 mL of THF was added t-BuOK ( 55.3 $\mathrm{mg}, 491 \mu \mathrm{~mol}$ ) at $0^{\circ} \mathrm{C}$. After raising the temperature to room temperature, the reaction mixture was stirred for 30 min at room temperature. The resulting pale green suspension was quenched with sat. aq $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted by AcOEt ( $\times 3$ ). The extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo, and purified by silica gel column chromatography (methanol/dichloromethane =1:6) to give 52 ( $111 \mathrm{mg}, 79 \%$ ). $\mathrm{Mp} 165-165.5^{\circ} \mathrm{C}$; $[\alpha]^{27}{ }_{\mathrm{D}}+36.4$ (c $0.17, \mathrm{CHCl}_{3}$ ); ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.43-1.58$ ( $1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \mathrm{a}$ ), 1.60$1.70(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 2.13(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \mathrm{~b}), 2.94(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9 \mathrm{~Hz}$, $\mathrm{H}-5$ ), 3.08 ( 1 H , ddd, J $=9,5.6,2.5 \mathrm{~Hz}, \mathrm{H}-8$ ), $3.20(1 \mathrm{H}$, ddd, J $=10.5,9,4.4 \mathrm{~Hz}, \mathrm{H}-4), 3.37(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1 \mathrm{a}), 3.38(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ $10.5,5.6 \mathrm{~Hz}, \mathrm{H}-9 \mathrm{a}), 3.44(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9 \mathrm{~Hz}, \mathrm{H}-7), 3.56$ ( $1 \mathrm{H}, \mathrm{dd}$, $\mathrm{J}=10.5,2.5 \mathrm{~Hz}, \mathrm{H}-9 \mathrm{~b}), 3.62(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9 \mathrm{~Hz}, \mathrm{H}-6), 3.97(1 \mathrm{H}$, m, H-1b); IR (KBr) 3415 (br), 2948, 2867, 1435, 1360, 1319, 1128, 1091, $1064 \mathrm{~cm}^{-1}$; EI-MS m/z $314\left(\mathrm{M}^{+}\right), 187\left(\mathrm{M}^{+}-\mathrm{I}\right)$. Anal. Cal cd for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{O}_{4}$ : C, 34.41; H, 4.81. Found: C, 34.50; H, 4.79.
(2R*,3S*,4R*,4aS*,8aS*)-3,4-Bis(trimethylsilyloxy)-2-(cyanomethyl)-1,4-dioxabicyclo[4.0.4]octane (54). To a solution of $52(100 \mathrm{mg}, 318 \mu \mathrm{~mol})$ in 3.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added $\mathrm{Et}_{3} \mathrm{~N}(270 \mu \mathrm{~L}, 955 \mu \mathrm{~mol})$ and TMSOTf ( $185 \mu \mathrm{~L}, 955$ $\mu \mathrm{mol}$ ) at $0^{\circ} \mathrm{C}$. After stirring for 1 h , the reaction mixture was poured into cooled sat. aq $\mathrm{NaHCO}_{3}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$ $(\times 3)$. The extracts were washed with brine, dried over $\mathrm{Na}_{2^{-}}$ $\mathrm{SO}_{4}$, and concentrated in vacuo. The residue was dissolved in 4.5 mL of DMSO, and $\mathrm{NaCN}(20.3 \mathrm{mg}, 417 \mu \mathrm{~mol})$ was added. After the temperature was raised to $75^{\circ} \mathrm{C}$, the reaction mixture was stirred for 30 min . After being cooled to room temperature, the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(\times 2)$. The extracts were washed with $\mathrm{H}_{2} \mathrm{O}$ $(\times 2)$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo, and purified by silica gel column chromatography (ether/hexane $=25: 75$ ) to give 54 ( $96 \%$ in two steps). Mp $94-94.5^{\circ} \mathrm{C} ;[\alpha]^{28}{ }_{\mathrm{D}}$ +29.4 (c 0.22, $\mathrm{CHCl}_{3}$ ); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 0.04$ ( 9 H , s, TMS), 0.09 ( $9 \mathrm{H}, \mathrm{s}, \mathrm{TMS}$ ), 1.40-1.54 (1H, m, H-3a), 1.65$1.75(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 2.05-2.15(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \mathrm{~b}), 2.57(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ $17,5.5 \mathrm{~Hz}, \mathrm{H}-9 \mathrm{a}), 2.74$ ( $1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=17,3 \mathrm{~Hz}, \mathrm{H}-9 \mathrm{~b}), 2.82$ ( 1 H , t , J $=9.0 \mathrm{~Hz}, \mathrm{H}-5), 3.10(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=11,9.5,4.5 \mathrm{~Hz}, \mathrm{H}-4)$, 3.28 ( 1 H, ddd, J $=11.5,9,6.3 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{a}), 3.37-3.52(3 \mathrm{H}, \mathrm{m}$, H-7, H-8, H-6), 3.90 (1H, m, H-1b); IR (K Br) 2957, 2896, 1415, 1381, 1251, 1152, 1098, 1078, 884, 842, $759 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{31} \mathrm{O}_{4} \mathrm{NSi}_{2}: \mathrm{N}, 3.92 ; \mathrm{C}, 53.75 ; \mathrm{H}, 8.75$. Found: $\mathrm{N}, 3.70$; C, 53.75; H, 9.04.
(2S*,3S*,4R*,4aS*,8aS*)-3,4-Bis(trimethylsilyloxy)-2-(formylmethyl)-1,4-dioxabicyclo[4.0.4]octane (55). To a solution of $54(100 \mathrm{mg}, 280 \mu \mathrm{~mol})$ in 3.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added a solution of DIBAL ( 1.0 M in hexane, $310 \mu \mathrm{~L}, 310 \mu \mathrm{~mol}$ ) at $-78{ }^{\circ} \mathrm{C}$. After stirring for 1.5 h at $-78 \sim-20^{\circ} \mathrm{C}$, to the reaction mixture was added $10 \%$ aq AcOH , and it was extracted with ether:hexane (1:1) ( $\times 2$ ). The extracts were washed with $\mathrm{H}_{2} \mathrm{O}$, sat. aq $\mathrm{NaHCO}_{3}$, and brine, dried over $\mathrm{Na}_{2}-$ $\mathrm{SO}_{4}$, concentrated in vacuo, and purified by silica gel column chromatography (ether/hexane = 33:67) to give aldehyde 55 ( $97.3 \mathrm{mg}, 96 \%$ ). $[\alpha]^{28}{ }_{\mathrm{D}}+14.2$ (c $0.31, \mathrm{CHCl}_{3}$ ); ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 0.14,0.15$ (each 9 H , each s, TMS), 1.32-1.46 ( $1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$ ), 1.64-1.74 (2H, m, H-2), 2.00-2.09 (1H, m, H-3), 2.46 ( 1 H , ddd, J = 16.5, 9, $3.5 \mathrm{~Hz}, \mathrm{H}-9 \mathrm{a}$ ), 2.73 ( 1 H , ddd, J = $16.5,3.5,1.5 \mathrm{~Hz}, \mathrm{H}-9 \mathrm{~b}), 2.78$ ( $1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=11,9,4.5 \mathrm{~Hz}, \mathrm{H}-4$ ), $3.21-3,30(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1 \mathrm{a}), 3.33(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9,8 \mathrm{~Hz}, \mathrm{H}-6), 3.50$
$(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9 \mathrm{~Hz}, \mathrm{H}-7), 3.75(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=9,3.5 \mathrm{~Hz}, \mathrm{H}-8), 3.89$ (1H, m, H-1b), 9.76 (1H, dd, J = 3.5, $1.5 \mathrm{~Hz}, \mathrm{CHO}$ ); IR (KBr) 2954, 2944, 2893, 2852, 2734, 1731, 1250, 1153, 1101, 1093, 851, $842 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{Si}_{2}$ : C, $53.29 ; \mathrm{H}, 8.94$. Found: C, 53.28; H, 9.10.
(2S*,3S*,4R*,4aS*,8aS*)-3,4-bis(trimethylsilyloxy)-2-(3-(trimethylsilyl)-2-propynyl)-1,4-dioxabicyclo[4.0.4]octane (56). To a solution of $\mathrm{CBr}_{4}(2.23 \mathrm{~g}, 6.72 \mathrm{mmol})$ in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added a solution of $\mathrm{PPh}_{3}(3.53 \mathrm{~g}, 13.5 \mathrm{mmol})$ in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$ via cannula. After stirring for 5 min , a solution of aldehyde $55(605 \mathrm{mg}, 1.68 \mathrm{mmol})$ in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added to this reaction mixture at $0^{\circ} \mathrm{C}$ via cannula. After stirring for 30 min , to the reaction mixture was added $\mathrm{Et}_{3} \mathrm{~N}(2.4 \mathrm{~mL}, 16.8 \mathrm{mmol})$, and the resulting orange mixture was poured into cooled sat. aq $\mathrm{NaHCO}_{3}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\times 2)$. The extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo, and purified by short silica gel column chromatography (ether/hexane $=33: 67$ ) to give a colorless oil, which was used to next reaction right away. To a solution of colorless dibromide in 24 mL of THF was added a solution of n-BuLi ( 1.6 M in hexane, $2.3 \mathrm{~mL}, 1.44 \mathrm{mmol}$ ) at $-78^{\circ} \mathrm{C}$. After stirring for 30 min at $-78^{\circ} \mathrm{C}$, to the resulting dark green solution was added TMSCI ( $640 \mu \mathrm{~L}, 5.04 \mathrm{mmol}$ ). After stirring for 20 min at $-78^{\circ} \mathrm{C}$, into this solution was poured a cooled aq $\mathrm{NaHCO}_{3}$, and it was extracted with $\mathrm{Et}_{2} \mathrm{O}$ :hexane $=1: 1(\times 2)$. The extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo, and purified by silica gel column chromatography (ether/hexane $=15: 85$ ) to give $56(589 \mathrm{mg}$, $95 \%$ in two steps). Mp 63-63.5 ${ }^{\circ} \mathrm{C}$; $[\alpha]^{28} \mathrm{D}+26.3$ (c $0.48, \mathrm{CHCl}_{3}$ ); ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.14,0.15,0.19$ (each 9 H , each s, TMS), 1.41-1.53 (1H, m, H-3), 1.64-1.74 (2H, m, H-2), $2.05-2.13(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 2.53(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=17.5,5 \mathrm{~Hz}, \mathrm{H}-9 \mathrm{a})$, $2.63(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=17.5,3.5 \mathrm{~Hz}, \mathrm{H}-9 \mathrm{~b}), 2.79(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9.5 \mathrm{~Hz}$, $\mathrm{H}-5$ ), 3.07 ( 1 H , ddd, J $=11,9.5,4.5 \mathrm{~Hz}, \mathrm{H}-4$ ), 3.32-3.23 ( 2 H , $\mathrm{m}, \mathrm{H}-1 \mathrm{a}, \mathrm{H}-8), 3.46(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{H}-7), 3.57(1 \mathrm{H}, \mathrm{dd}$, $\mathrm{J}=9.5,8.5 \mathrm{~Hz}, \mathrm{H}-6), 3.88(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1 \mathrm{~b}) ; \operatorname{IR}(\mathrm{KBr}) 2950$, 2900, 2859, 2176, 1249, 1151, 1079, 850, $838 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{40} \mathrm{O}_{4} \mathrm{Si}_{3}: \mathrm{C}, 56.02 ; \mathrm{H}, 9.40$. Found: C, $56.09 ; \mathrm{H}$, 9.66.
(2S*,3S*,4R*,4aS*,8aS*)-3,4-Diacetoxy-2-(3-(trimethyl-silyl)-2-propynyl)-1,4-dioxabicyclo[4.0.4]octane (57). To a solution of $56(693 \mathrm{mg}, 1.62 \mathrm{mmol})$ in 25 mL of MeOH was added PPTS ( $6.0 \mathrm{mg}, 23.9 \mu \mathrm{~mol}$ ). After stirring for 1 h at room temperature, the reaction mixture was concentrated in vacuo, and the residue was dissolved in 25 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. To this solution were added $\mathrm{Ac}_{2} \mathrm{O}(3.0 \mathrm{~mL}, 29.9 \mathrm{mmol})$ ), pyridine ( 6.0 $\mathrm{mL}, 74.2 \mathrm{mmol}$ ), and DMAP ( $10 \mathrm{mg}, 81.9 \mu \mathrm{~mol}$ ). After stirring for 1.5 h at room temperature, to this reaction mixture was added $\mathrm{H}_{2} \mathrm{O}$, and it was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extracts were washed with sat. aq $\mathrm{CuSO}_{4}, \mathrm{H}_{2} \mathrm{O}$, and brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation and concentration gave crude oil which was purified by silica gel column chromatography (ether/ hexane $=40: 60$ ) to give 57 ( $577 \mathrm{mg}, 97 \%$ ). Mp $79.5-80{ }^{\circ} \mathrm{C}$; $[\alpha]^{26} \mathrm{D}+32.9$ (c 4.68, $\mathrm{CHCl}_{3}$ ); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.15$ ( $9 \mathrm{H}, \mathrm{s}, \mathrm{TMS}$ ), 1.44-1.57 (1H, m, H-3a), 1.68-1.77 (2H, m, H-2), 2.03 (3H, s, Ac), 2.06 (3H , s, Ac), 2.11-2.19 (1H , m, H-3b), 2.48 ( $1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=17,6 \mathrm{~Hz}, \mathrm{H}-9 \mathrm{a}$ ), $2.50(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=17,5 \mathrm{~Hz}, \mathrm{H}-9 \mathrm{~b}$ ), $3.08(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9.5 \mathrm{~Hz}, \mathrm{H}-5), 3.23$ ( 1 H , ddd, J = 11, 9.5, 4.5 $\mathrm{Hz}, \mathrm{H}-4), 3.28-3.37$ ( $1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1 \mathrm{a}$ ), 3.58 ( $1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=9.5,6$, $5 \mathrm{~Hz}, \mathrm{H}-8), 3.94(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1 \mathrm{~b}), 4.92(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9.5 \mathrm{~Hz}, \mathrm{H}-7)$, $5.12(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9.5 \mathrm{~Hz}, \mathrm{H}-6) ;{ }^{13} \mathrm{C}$ NMR $\left(67.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 20.83, 20.92, 23.81, 24.87, 27.08, 28.91, 67.78, 72.43, 73.89, 75.38, 76.14, 79.32, 86.74, 101.71, 169.77, 179,64; IR (KBr) 2957, 2868, 2180, 1749 (br), 1363, 1242 (br), 1104, 1040, 840, $762 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{6} \mathrm{Si}$ : C, $58.67 ; \mathrm{H}, 7.66$. Found: C, 58.53; H, 7.72.

Acetylene 58. To a solution of $57(577 \mathrm{mg}, 1.57 \mathrm{mmol})$ and di-O-pivaloyl-d-xylal ( $668 \mathrm{mg}, 2.36 \mathrm{mmol}$ ) in 25 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $\mathrm{SnCl}_{4}(265 \mu \mathrm{~L}, 2.28 \mathrm{mmol})$ at $-20^{\circ} \mathrm{C}$. After stirring for 30 min at $-20^{\circ} \mathrm{C}$, another di-O-pivaloyl-d-xylal ( 446 mg , 1.57 mmol ) was added. After additional 30 min at $-20^{\circ} \mathrm{C}$, the reaction mixture was poured into cooled sat. aq $\mathrm{NaHCO}_{3}$ and sat. aq $\mathrm{NaK}(\mathrm{CH}(\mathrm{OH}) \mathrm{COO})_{2}$ (1:1) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(\times 3)$. The extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo, and purified by silica gel column chromatography
(ether/hexane $=60: 40$ ) to give a col orless oil 58 ( $723 \mathrm{mg}, 96 \%$ ). $[\alpha]^{28} \mathrm{D}+158.1$ (c $0.69, \mathrm{CHCl}_{3}$ ); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 1.21 (9H, s, Piv), 1.46-1.56 (1H, m, H-14a), 1.68-1.76 (2H, $\mathrm{m}, \mathrm{H}-15$ ), 2.04, 2.06 (each 3 H , each s, Ac), 2.01-2.17 ( $1 \mathrm{H}, \mathrm{m}$, H-14b), 2.45 ( 1 H, ddd, J $=12.5,6.4,2.4 \mathrm{~Hz}, \mathrm{H}-8 \mathrm{a}$ ), 2.53 ( 1 H , ddd, J = 12.5, 5, 2.5 Hz, H-8b), 3.08 ( $1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9.5 \mathrm{~Hz}, \mathrm{H}-12$ ), 3.22 (1H, ddd, J = 11, 9.5, 4.5 Hz, H-13), 3.28-3.37 (1H, m, $\mathrm{H}-16 \mathrm{a}), 3.58$ ( 1 H, ddd, J $=10,6,4.5 \mathrm{~Hz}, \mathrm{H}-9$ ), 3.79 ( $1 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-1 \mathrm{a}$ ), 3.94 ( $1 \mathrm{H}, \mathrm{m}, \mathrm{H}-16 \mathrm{~b}$ ), 4.19 ( $1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=13.5,3.5 \mathrm{~Hz}$, $\mathrm{H}-1 \mathrm{~b}), 4.90(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5), 4.93(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9.5 \mathrm{~Hz}, \mathrm{H}-10), 5.02$ ( $1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2$ ), 5.12 ( $1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9.5 \mathrm{~Hz}, \mathrm{H}-11$ ), 5.89 ( $1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4^{*}$ ), 6.01 ( 1 H , dd, J $=10.5,3.6 \mathrm{~Hz}, \mathrm{H}-3^{*}$ ); ${ }^{13} \mathrm{C}$ NMR ( 75.4 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 20.75,20.92,22.64,24.87,27.10,28.97,38.74,63.13$, 63.68, 64.28, 67.80, 72.20, 73.87, 75.38, 75.87, 77.91, 79.26, 82.14, 122.55, 132.09, 169.79, 170.62, 178.24; IR (KBr) 2968, 2946, 2864, 1751, 1725, 1368, 1243, 1159, 1098, 1051, 945, 736 $\mathrm{cm}^{-1}$. Anal. Cal cd for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O} 9$ : C, $62.75 ; \mathrm{H}, 7.16$. Found: C, 62.76; H, 7.31.

Acetylenecobalthexacarbonyl Complex 62. To a solution of $58(42.7 \mathrm{mg}, 89.2 \mu \mathrm{~mol})$ in 2.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added a solution of $\mathrm{CO}_{2}(\mathrm{CO})_{8}(136 \mathrm{mg}, 398 \mu \mathrm{~mol})$ in 1.5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ via cannula. After being stirred for 30 min at room temperature, the reaction mixture was concentrated in vacuo and purified by silica gel column chromatography (ether/hexane $=40: 60)$ to give dark red oil $62(52.0 \mathrm{mg}, 76 \%)$. This compound was labile and was used to next reaction right away. $[\alpha]^{30_{D}}$ +85.9 (c 0.10, $\mathrm{CHCl}_{3}$ ); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.21$ ( 9 H , s, Piv), 1.44-1.52 (1H, m, H-14a), 1.66-1.75 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{H}-15$ ), 2.06, 2.08 (each 3 H , each s, Ac), 2.09-2.16 (1H, m, H-14b), $2.89(1 \mathrm{H}, \mathrm{J}=16.5,3.5 \mathrm{~Hz}, \mathrm{H}-8 \mathrm{a}), 2.95(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=16.5,8$ $\mathrm{Hz}, \mathrm{H}-8 \mathrm{~b})$, $3.12(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9.5 \mathrm{~Hz}, \mathrm{H}-12)$, $3.19(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=$ $9.5,4.5 \mathrm{~Hz}, \mathrm{H}-13), 3.28-3.37$ ( $1 \mathrm{H}, \mathrm{m}, \mathrm{H}-16 \mathrm{a}$ ), 3.58 ( 1 H , ddd, J $=9.5,8,3.5 \mathrm{~Hz}, \mathrm{H}-9), 3.64(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.5,7 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{a})$, 3.94 ( $1 \mathrm{H}, \mathrm{m}, \mathrm{H}-16 \mathrm{~b}$ ), 4.24 ( 1 H , dd, J $=11.5,5 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{~b}), 4.94$ $(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9.5 \mathrm{~Hz}, \mathrm{H}-10), 5.16(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9.5 \mathrm{~Hz}, \mathrm{H}-11), 5.25$ ( $1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2$ ), 5.29 ( $1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=4,2 \mathrm{~Hz}, \mathrm{H}-5$ ), 5.90 ( $1 \mathrm{H}, \mathrm{dt}, \mathrm{J}$ $=10.5,2 \mathrm{~Hz}, \mathrm{H}-4), 6.02$ ( 1 H , ddd, J $=10.5,2,1.5 \mathrm{~Hz}, \mathrm{H}-3$ ); ${ }^{13} \mathrm{C}$ NMR ( $67.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 20.70,20.93,24.87,27.13,28.77$, 35.33, 38.78, 64.11, 65.41, 67.83, 72.47, 73.62, 73.87, 75.13, 78.81, 79.15, 92.72, 96.17, 125.48, 132.16, 170.20, 178.06, 199.42 (br); IR (KBr) 2959, 2947, 2862, 2092, 2052, 2018, 1754, 1732, 1365, 1239, 1155, 1093, $522 \mathrm{~cm}^{-1} ;$ FAB-MS m/z 765 (M $+H$ ), 708 ( $\mathrm{M}-2 \times \mathrm{CO}$ ), $680(\mathrm{M}-3 \times \mathrm{CO}), 652(\mathrm{M}-4 \times \mathrm{CO})$, 596 (M - 6xCO); HR-FAB-MS calcd for $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{O}_{13} \mathrm{CO}_{2} 708.0663$, found 708.0641.
5-Methyl Ether 59. To a solution of pivalic anhydride (105 $\mu \mathrm{L}, 523 \mu \mathrm{~mol}$ ) in 3.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added TfOH ( $25 \mu \mathrm{~L}$, $262 \mu \mathrm{~mol}$ ) at $-20^{\circ} \mathrm{C}$. After stirring for 30 min at $-20^{\circ} \mathrm{C}$, to the mixture was added a solution of cobalt complex 62 (39.9 $\mathrm{mg}, 52.3 \mu \mathrm{~mol}$ ) in 2.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ via cannula. After stirring for 30 min at $-20^{\circ} \mathrm{C}$, to the reaction mixture was added MeOH (200 $\mu \mathrm{L}$ ), and the resulting dark red solution was poured into cooled sat. aq $\mathrm{NaHCO}_{3}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(\times 2)$. The extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentration in vacuo, and purified by silica gel column chromatography (ether/hexane $=40: 60$ ) to give a dark red oil 59 (44.8 $\mathrm{mg}, 97 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.19,1.20,1.21,1.22$ (total 18H, each s, Piv), 1.44-1.56 (1H, m, H-14a), 1.70 ( 2 H , $\mathrm{m}, \mathrm{H}-15), 2.05,2.06$ (each 3 H , each s, Ac), 2.07 ( $6 \mathrm{H}, \mathrm{s}, \mathrm{Acx} 2$ ), 2.09-2.16 (1H, m, H-14b), 3.11 ( $1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9 \mathrm{~Hz}, \mathrm{H}-12$ ), 3.20 (1H, m, H-13), 3.27-3.36 (1H, m, H-16a), 3.38, 3.42 (total 3H, each s, OMe), 3.57 ( $1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9$ ), 3.95 ( $1 \mathrm{H}, \mathrm{m}, \mathrm{H}-16 \mathrm{~b}), 4.04$ ( 1 H , ddd, J $=12,7.5,5 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{a}$ ), 4.29 ( 1 H , ddd, $\mathrm{J}=12,6,3.5 \mathrm{~Hz}$, $\mathrm{H}-1 \mathrm{~b}), 4.74$ ( $1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$ ), 4.92, 4.93 ( 1 H , each $\mathrm{t}, \mathrm{J}=9.5 \mathrm{~Hz}$, $\mathrm{H}-10), 5.16(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9.5 \mathrm{~Hz}, \mathrm{H}-11), 5.58(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 5.79$ (2H, m, H-3, H-4); ${ }^{13} \mathrm{C}$ NMR ( $75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 20.6,20.8$, 24.8, 26.97, 27.01, 27.02, 28.9, 35.2, 35.7, 38.67, 38.73, 38.8, $57.15,57.21,64.7,67.8,70.51,70.54,72.5,73.8,73.9,75.0,76.4$, 87.7, 79.2, 81.1, 81.4, 92.4, 93.1, 97.2, 97.9, 126.5, 127.3, 132.9, 133.2, 170.20, 170.23, 170.7, 177.2, 178.1, 199.7(br); IR (KBr) 2977, 2939, 2912, 2865, 2092, 2053, 2029, 1751, 1735, 1482, 1367, 1284, 1241, 1141, $520 \mathrm{~cm}^{-1}$; MS(FAB) m/z 849 (M + H - MeOH), 796 (M $-3 \times \mathrm{CO}$ ), 768 ( $\mathrm{M}-4 \times \mathrm{CO}$ ), 712 (M $6 \times \mathrm{CO}$ ); HRMS(FAB) calcd for $\mathrm{C}_{36} \mathrm{H}_{43} \mathrm{O}_{16} \mathrm{CO}_{2} 849.1214$, found 849.1214.
endo-Acetylenecobalthexacarbonyl Cyclic Ether 60. To a solution of 59 ( $930 \mathrm{mg}, 1.06 \mathrm{mmol}$ ) in 40 mL of degassed MeOH was added $\mathrm{K}_{2} \mathrm{CO}_{3}$ ( $176 \mathrm{mg}, 1.27 \mathrm{mmol}$ ). After being stirred for 45 min at room temperature, the reaction mixture was poured into cooled sat. aq $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with AcOEt ( $\times 2$ ). The extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and purified by silica gel column chromatography (ethyl acetate/hexane $=50: 50$ ) to give a dark red diol $59^{\prime}(685 \mathrm{mg}, 81 \%)$. To a solution of 59 ( $21.3 \mathrm{mg}, 26.7 \mu \mathrm{~mol}$ ) in degassed 26.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added a solution of $\mathrm{BF}_{3}$. $\mathrm{OEt}_{2}(0.27 \mathrm{M}$ in 1,2-dichloromethane, $100 \mu \mathrm{~L}, 27.2 \mu \mathrm{~mol}$ ) at 0 ${ }^{\circ} \mathrm{C}$. After being stirred for 20 min at $0^{\circ} \mathrm{C}$, the reaction mixture was poured into cooled sat. aq $\mathrm{NaHCO}_{3}$ and extracted with AcOEt ( $\times 2$ ). The extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and purified by silica gel column chromatography (ether/hexane $=30: 70$ ) to give a dark red oil 60 ( $14.5 \mathrm{mg}, 71 \%$ ). 59: ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.19,1,20$ ( 9 H , each s, Piv), 1.21 (9H, brs, Piv), 1.40-1.53 (1H, m, H-14a), 1.69 (2H, m, H-15), 2.02-2.12 (1H, m, H-14b), 2.60-2.86 (2H, $\mathrm{m}, \mathrm{H}-8), 2.94(1 \mathrm{~h}, \mathrm{t}, \mathrm{J}=9 \mathrm{~Hz}, \mathrm{H}-12), 3.04-3.14(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-13)$, 3.32-3.45 (3H, m, H-10, H-11, H-16a), 3.39, 3.43 (total 3H, each s, OMe), 3.59 ( $1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9$ ), 3.96 ( $1 \mathrm{H}, \mathrm{m}, \mathrm{H}-16 \mathrm{~b}$ ), 4.06 ( 1 H , ddd, J $=12,8,3 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{a}), 4.29(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12,3.5 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{~b}$ ), 4.78 (1H , m, H-5), 5,56 (1H, m, H-2), 5.80 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3, \mathrm{H}-4$ ); ${ }^{13} \mathrm{C}$ NMR $\left(75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta 25.0,26.98,27.01,27.03,28.79$, $28.84,28.86,35.7,36.0,38.70,38.72,38.77,38.79,57.1,57.2$, $64.8,64.9,67.8,70.6,70.8,74.6,76.1,76.5,80.2,80.3,81.2$, 81.4, 81.7, 93.6, 93.9, 96.7, 97.6, 126.3, 127.2, 133.2, 177.4, 177.5, 178.20, 178.23, 178.3, 199.9(br); IR (KBr) 3467 (br), 2968, 2948, 2881, 2870, 2090, 2048, 2027, 1739, 1733, 1482, 1280, 1163, 1153, $1084 \mathrm{~cm}^{-1}$; MS(FAB) m/z 765 (M + H MeOH ), 712 ( $\mathrm{M}-3 \times \mathrm{CO}$ ), 684 ( $\mathrm{M}-4 \times \mathrm{CO}$ ), 656 ( $\mathrm{M}-5 \times \mathrm{CO}$ ), 628 (M - $6 \times$ CO); HRMS(FAB) calcd for $\mathrm{C}_{32} \mathrm{H}_{39} \mathrm{O}_{14} \mathrm{CO}_{2} 765.1003$, found 765.1003. 60: $[\alpha]^{29} \mathrm{D}-266$ (c 0.12, $\mathrm{CHCl}_{3}$ ); ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.18,1.20$ (each 9 H , each $\mathrm{s}, \mathrm{OPiv}$ ), $1.40-1.53$ ( $1 \mathrm{H}, \mathrm{m}, \mathrm{H}-14 \mathrm{a}$ ), 1.72 (2H , m, H-15), 2.04-2.11 (1H, m, H-14b), 2.87 ( 1 H , bs, -OH ), 2.91 ( $1 \mathrm{H}, ~ d d, \mathrm{~J}=16,10 \mathrm{~Hz}, \mathrm{H}-8 \mathrm{a}$ ), 3.05 ( $1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9 \mathrm{~Hz}, \mathrm{H}-12$ ), $3.13(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=9,4 \mathrm{~Hz}, \mathrm{H}-13), 3.38$ ( $1 \mathrm{H}, \mathrm{m}, \mathrm{H}-16 \mathrm{a}$ ), 3.41 ( $1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9 \mathrm{~Hz}, \mathrm{H}-10$ ), 3.47 ( 1 H , ddd, J $=10,9,4 \mathrm{~Hz}, \mathrm{H}-9), 3.51$ ( $1 \mathrm{H}, \mathrm{m}, \mathrm{H}-16 \mathrm{a}$ ), 3.60 ( $1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=16$, $4 \mathrm{~Hz}, \mathrm{H}-8 \mathrm{~b}), 3.68$ ( $1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9 \mathrm{~Hz}, \mathrm{H}-11$ ), 4.00 ( $1 \mathrm{H}, \mathrm{m}, \mathrm{H}-16 \mathrm{~b}$ ), $4.12(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.6,7 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{a}), 4.27(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.6,3.5$ $\mathrm{Hz}, \mathrm{H}-1 \mathrm{~b}), 5.07(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.7 \mathrm{~Hz}, \mathrm{H}-5), 5,63(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2)$, $5.88(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=16,5 \mathrm{~Hz}, \mathrm{H}-3), 5.92(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=16,4.7 \mathrm{~Hz}$, $\mathrm{H}-4)$; ${ }^{13} \mathrm{C}$ NMR ( $75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 24.9,26.95,27.04,28.9$, $38.67,38.72,38.8,54.7,67.6,70.7,74.3,74.7,75.8,76.4,80.0$, 81.37, 87.6, 91.7, 99.8, 125.8, 131.9, 198.9(br); IR (KBr) 3503(br), 2958, 2932, 2873, 2093, 2054, 2025, 1733, 1482, 1282, 1146, 1097, $519 \mathrm{~cm}^{-1} ; \mathrm{MS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z} 765(\mathrm{M}+\mathrm{H}), 680(\mathrm{M}-$ $3 \times C O), 653$ ( $\mathrm{M}+\mathrm{H}-4 \times \mathrm{CO}$ ), 624 ( $\mathrm{M}-5 \times \mathrm{CO}$ ), 596 ( $\mathrm{M}-$ $6 \times$ CO); $\mathrm{HRMS}(\mathrm{FAB})$ calcd for $\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{O}_{8} \mathrm{Co}_{2}, 596.1230$, found 596.1224.
(2S,5S)-ABC Segment Dipivalate 61. To a solution of $\mathbf{6 0}$ ( $10.2 \mathrm{mg}, 13.3 \mu \mathrm{~mol}$ ) in 2.0 mL of benzene was added Wilkinson catalyst ( $0.6 \mathrm{mg}, 0.67 \mu \mathrm{~mol}$ ). After stirring for 5 h at $65-70$ ${ }^{\circ} \mathrm{C}$ under $100 \mathrm{~kg} / \mathrm{cm}^{2}$ hydrogen atmosphere, the pressure was reduced to ambient pressure, and the temperature was turned into room temperature. The resulting mixture was filtered, concentrated, and purified by silica gel column chromatography (ether/hexane = 30:70) to give $\mathbf{6 1}(4.6 \mathrm{mg}, 72 \%) . \mathrm{Mp} 88.5-$ $89{ }^{\circ} \mathrm{C} ;[\alpha]^{26} \mathrm{D}-17.2\left(\mathrm{c} 0.47, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 1.19$ ( $9 \mathrm{H}, \mathrm{s}$, Piv), 1.21 ( $9 \mathrm{H}, \mathrm{s}$, Piv), 1.45 (1H, m, H-14a), 1.72 (2H , m, H-15), 2.07 (1H, m, H-14b), 2.40 ( $1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{a}$ ), 2.62 ( 1 H , ddd, J $=4,8.5,16.0 \mathrm{~Hz}, \mathrm{H}-8 \mathrm{~b}$ ), 2.78 ( 1 H, brs, -OH ), 3.03 $(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9.0 \mathrm{~Hz}, \mathrm{H}-12), 3.13(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=11,9,6.5 \mathrm{~Hz}$, $\mathrm{H}-13$ ), 3.24 ( $1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=9,8.5,4 \mathrm{~Hz}, \mathrm{H}-9$ ), $3.37(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9$ $\mathrm{Hz}, \mathrm{H}-10), 3.43$ (1H, m, H-16a), 3.67 ( $1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9 \mathrm{~Hz}, \mathrm{H}-11$ ), $4.00(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-16 \mathrm{~b}), 4.12(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=6.5,12 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{a}), 4.27$ ( $1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=4.0,12 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{~b}$ ), $4.55(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5), 5.52(1 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-2), 5.73(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=15.5,6,1.5 \mathrm{~Hz}, \mathrm{H}-3), 5.75(1 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-7$ ), $5.84(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6), 5.89$ ( $1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=15.5,6,1 \mathrm{~Hz}, \mathrm{H}-4$ ); IR (KBr) 3470, 2971, 2871, 1732, 1482, 1281, 1144, 1098, 1040 $\mathrm{cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{40} \mathrm{O}_{8}$ : $\mathrm{C}, 64.98 ; \mathrm{H}, 8.39$. Found: C, 64.97; H, 8.41.
(2S,5S)-ABC Segment 40. To the solution of dipivalate 61 $(9.4 \mathrm{mg}, 19.6 \mu \mathrm{~mol})$ in $\mathrm{MeOH}(1.5 \mathrm{~mL})$ was added NaOMe ( $28 \%$ in $\mathrm{MeOH}, 30 \mu \mathrm{~L}$ ). After being stirred for 4 h at room temperature, the reaction was quenched by AcOH ( $10 \%$ in $\mathrm{MeOH}, 50 \mu \mathrm{~L}$ ) at $0^{\circ} \mathrm{C}$. The resulting mixture was concentrated in vacuo. The residue was purified by silica gel column chromatography to obtain (2S,5S)-ABC segment 40 ( 5.2 mg , $85 \%$ ). Mp $144.5-145{ }^{\circ} \mathrm{C}$; $[\alpha]^{28} \mathrm{D}-52.7\left(\mathrm{c} 0.045, \mathrm{MeOH}\right.$ ); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ) $\delta 1.38-1.47$ ( $1 \mathrm{H}, \mathrm{m}, \mathrm{H}-14 \mathrm{a}$ ), 1.651.72 (2H, m, H-15), 2.01-2.05 (1H , m, H-14b), 2.33-2.41 (1H, m, H-8a), 2.55-2.61 (1H, m, H-8b), 2.89 ( $1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9 \mathrm{~Hz}, \mathrm{H}-12$ ), $3.09(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=11,9,4.5 \mathrm{~Hz}, \mathrm{H}-13), 3.21(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=9,4$ $\mathrm{Hz}, \mathrm{H}-9), 3.30(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9 \mathrm{~Hz}, \mathrm{H}-10), 3.32-3.39(1 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-16 \mathrm{a}), 3.47$ (1H, dd, J $=11,6 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{a}), 3.51(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ $11,5 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{~b}), 3.51(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9 \mathrm{~Hz}, \mathrm{H}-11), 3.89-2.94(1 \mathrm{H}$, m, H-16b), 4.08-4.13 (1H, m, H-2), 4.55-4.58 (1H, m, H-5), 5.75-5.82 (3H, m, H-3*, 6, 7), $5.85(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=15.5,5 \mathrm{~Hz}$, H-4*); IR (KBr) 3356, 3195, 1101, $1042 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{6}: \mathrm{C}, 61.52 ; \mathrm{H}, 7.74$. Found: C, 61.51; H, 7.72.
(2R,5S)-ABC Segment 41. ( $2 R, 5 S$ )-ABC segment 41 was prepared as ( $2 \mathrm{~S}, 5 \mathrm{~S}$ )-ABC segment $\mathbf{4 0} \mathrm{Mp} 167.5-168^{\circ} \mathrm{C} ;[\alpha]^{28} \mathrm{D}_{\mathrm{D}}$ -45.4 (c 0.045, MeOH); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ) $\delta 1.39-$ 1.47 ( $1 \mathrm{H}, \mathrm{m}, \mathrm{H}-14 \mathrm{a}$ ), $1.65-1.72(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-15), 2.00-2.05(1 \mathrm{H}$, m, H-14b), 2.33-2.41 (1H, m, H-8a), 2.54-2.62 (1H, m, H-8b), $2.89(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9 \mathrm{~Hz}, \mathrm{H}-12), 3.09$ (1H, ddd, J = 11, 9, 4.5 Hz , $\mathrm{H}-13)$, $3.21(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=9,4 \mathrm{~Hz}, \mathrm{H}-9), 3.31(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9 \mathrm{~Hz}$, $\mathrm{H}-10$ ), $3.35-3.39$ ( $1 \mathrm{H}, \mathrm{m}, \mathrm{H}-16 \mathrm{a}$ ), 3.46 ( $1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11,4 \mathrm{~Hz}$, $\mathrm{H}-\mathrm{la}$ ), 3.50 ( $1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11,5.5 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{~b}$ ), $3.50(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9$ $\mathrm{Hz}, \mathrm{H}-11$ ), 3.89-2.94 (1H, m, H-16b), 4.09-4.14 (1H, m, H-2), 4.55-4.58 (1H, m, H-5), 5.77-5.82 (2H, m, H-6, 7), $5.81(1 \mathrm{H}$, dd, J $\left.=15.5,5 \mathrm{~Hz}, \mathrm{H}-3^{*}\right), 5.86\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=15.5,4.5 \mathrm{~Hz}, \mathrm{H}-4^{*}\right)$; IR (KBr) 3314 (br), 3232, 1098, $1047 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{6}: \mathrm{C}, 61.52 ; \mathrm{H}, 7.74$. Found: C, 61.51; H, 7.72.
(2S,5S)-Tris(p-bromobenzoyl)-ABC Segment 42. To the solution of ( $2 \mathrm{~S}, 5 \mathrm{~S}$ )-ABC fragment $40(2.8 \mathrm{mg}, 8.96 \mu \mathrm{~mol})$ in the mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ and triethylamine $(50 \mu \mathrm{~L})$ was added p-bromobenzoyl chloride ( $9.4 \mathrm{mg}, 45.7 \mu \mathrm{~mol}$ ) at $0{ }^{\circ} \mathrm{C}$. After being stirred overnight at room temperature, to this reaction mixture was added sat. $\mathrm{NaHCO}_{3}$, and it was extracted with $\mathrm{Et}_{2} \mathrm{O}(\times 2)$. The extracts were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation and concentration gave a crude oil which was purified by silica gel column chromatography (ether/ hexane $=40: 60$ ) to obtain ( $2 \mathrm{~S}, 5 \mathrm{~S}$ )-tris(p-bromobenzoyl)-ABC segment 42 ( $2.9 \mathrm{mg}, 3.34 \mu \mathrm{~mol}, 37 \%$ ). Mp 174.5-175 ${ }^{\circ} \mathrm{C}$; $[\alpha]^{27} \mathrm{D}$ -33.1 (c 0.42, $\mathrm{CHCl}_{3}$ ); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.50(1 \mathrm{H}$, ddd, J = 12, 11, $5 \mathrm{~Hz}, \mathrm{H}-14 \mathrm{a}), 1.67-1.81$ (2H, m, H-15), 2.14 ( $1 \mathrm{H}, \mathrm{m}, \mathrm{H}-14 \mathrm{~b}$ ), 2.44 ( 1 H, ddtd, J $=15.5,10,3,2 \mathrm{~Hz}, \mathrm{H}-8 \mathrm{a}$ ), $2.68(1 \mathrm{H}, \operatorname{ddd}, \mathrm{J}=15.5,8.5,3.5 \mathrm{~Hz}, \mathrm{H}-8 \mathrm{~b}), 3.19(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9$ $\mathrm{Hz}, \mathrm{H}-12), 3.27$ ( 1 H, ddd, J = 10.5, $9,4.5 \mathrm{~Hz}, \mathrm{H}-13$ ), $3.31(1 \mathrm{H}$, dd, J $=11.5,4 \mathrm{~Hz}, \mathrm{H}-16 \mathrm{a}$ ) 3.41 ( 1 H , ddd, J $=10,9,3.5 \mathrm{~Hz}$, H-9), 3.58 (1H, t. J $=9 \mathrm{~Hz}, \mathrm{H}-10$ ), 3.92 ( $1 \mathrm{H}, \mathrm{m}, \mathrm{H}-16 \mathrm{~b}$ ), 4.22 ( $1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.5,7 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{a}$ ), $4.33(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.5,3.5 \mathrm{~Hz}$, $\mathrm{H}-1 \mathrm{~b}), 4.55(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5), 5.42(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9 \mathrm{~Hz}, \mathrm{H}-11), 5.69-$ 5.90 (5H, m, H-2, H-3, H-4, H-6, H-7), 7.38, 7.55, 7.56, 7.68, $7.817,7.822$ (each 2 H , each d, each J $=8.5 \mathrm{~Hz}, \mathrm{O}-\mathrm{p}-\mathrm{BrBz}$ ); ${ }^{13} \mathrm{C}$ NMR (75.4 M Hz, CDCl 3 ), $\delta 29.1,29.6,34.1,65.5,67.7,72.5$, 75.0, 75.6, 79.7, 85.6. 123.5, 128.0. 128.7, 129.3, 131.1, 131.3, 131.6, 131.85, 131.90, 134.8, 135.2, 164.9, 165.4, 165.6; IR (KBr) 2952, 2867, 1724, 1590, 1484, 1399, 1267, 1174, 1101, 1013, 847, $754 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{37} \mathrm{H}_{31} \mathrm{O}_{9} \mathrm{Br} \mathrm{r}_{3}: \mathrm{C}, 51.59$; H, 3.86. Found: C, 51.50; H, 3.85.
(2R,5S)-Tris(p-bromobenzoyl)-ABC Fragment 43. (2R,-5S)-tris(p-bromobenzoyl)-ABC 43 segment was prepared as (2S,5S)-tris(p-bromobenzoyl)-ABC segment 42. Mp 104.5-105 ${ }^{\circ} \mathrm{C} ;[\alpha]^{27} \mathrm{D}-79.9\left(\mathrm{c} 0.50, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $1.50(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=12,11,5 \mathrm{~Hz}, \mathrm{H}-14 \mathrm{a}), 1.67-1.81(2 \mathrm{H}, \mathrm{m}$, H-15), 2.13 ( $1 \mathrm{H}, \mathrm{m}, \mathrm{H}-14 \mathrm{~b}$ ), 2.43 ( $1 \mathrm{H}, \mathrm{ddq}, \mathrm{J}=16,10,3 \mathrm{~Hz}$, H-8a), 2.68 ( 1 H , ddd, J $=16,8.5,1.5 \mathrm{~Hz}, \mathrm{H}-8 \mathrm{~b}$ ), 3.20 ( $1 \mathrm{H}, \mathrm{t}$, J $=9 \mathrm{~Hz}, \mathrm{H}-12), 3.27(1 \mathrm{H}$, ddd, $\mathrm{J}=10.5,9,4 \mathrm{~Hz}, \mathrm{H}-13), 3.31$ ( $1 \mathrm{H}, \mathrm{td}, \mathrm{J}=11,3.5 \mathrm{~Hz}, \mathrm{H}-16 \mathrm{a}$ ), 3.41 ( 1 H , ddd, J = 10, 9, 3.5 $\mathrm{Hz}, \mathrm{H}-9), 3.59(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9 \mathrm{~Hz}, \mathrm{H}-10), 3.94(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-16 \mathrm{~b})$, 4.10 ( $1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.5,7 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{a}$ ), 4.18 ( $1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.5,3.5$ $\mathrm{Hz}, \mathrm{H}-1 \mathrm{~b}), 4.51(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5), 5.42(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9 \mathrm{~Hz}, \mathrm{H}-11)$, 5.65-5.88 (5H, m, H-2, H-3, H-4, H-6, H-7), $7.54(2 H, d, J=$
8.5 Hz, O-p-BrBz), 7.55 (4H, d, J = $8.5 \mathrm{~Hz}, \mathrm{O}-\mathrm{p}-\mathrm{BrBz}$ ), 7.55 ( $4 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{O}-\mathrm{p}-\mathrm{BrBz}), 7.99,7.81,7.90$ (each 2 H , each d, each J $=8.5 \mathrm{~Hz}, \mathrm{O}-\mathrm{p}-\mathrm{BrBz}) ;{ }^{13} \mathrm{C}$ NMR ( $75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta$ 29.1, 29.6, 34.1, 65.1, 67.7, 71.9, 75.0, 75.2, 75.6, 76.8, 79.7, 85.6, 123.6, 127.8, 128.2, 128.4, 129.3, 131.2, 131.8, 134.7, 135.0, 164.9, 165.3, 165.6; IR (KBr) 2951, 2855, 1725, 1591, 1484, 1399, 1267, 1174, 1013, 847, $754 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{37} \mathrm{H}_{31} \mathrm{O}_{9} \mathrm{Br}_{3}: \mathrm{C}, 51.59 ; \mathrm{H}, 3.86$. Found: C, $51.56 ; \mathrm{H}, 3.93$.

Acknowledgment. This research was financially supported by a Grant-In-Aids for Scientific Research from Ministry of Education, Science, Sports and Culture and J SPS-RFTF. S.H. thanks to J SPS Research Fellowships for Young Scientists. Special thanks are due to Prof. Emeritus H. Nakata in Aichi Education University for the helpful discussion on assignment of mass
spectra and Mr. S. Kitamura in Nagoya University for the measurement of elemental analysis and high resoIution mass spectra. We also thank Dr. Shigeyosi Tanaka at K ao Co. Ltd. and Dr. Chavie Yenjai at Kohn Kaen University, Thailand, for their preliminary studies connected to this work.

Supporting Information Available: ${ }^{1} \mathrm{H}$ NMR of spectra of compounds 5, 11-13, 17, 20-25, 27, 35, 37, 40-43, 4547, 49-52, 54-61, the diastereomer of 61 at C-2 position, 62; CD spectra of compounds 42 and 43 ( 38 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.
J O980088N


[^0]:    * Corresponding author. Tel.: (52) 789-4109. Fax: (52) 789-4111. E-mail: isobem@agr.nagoya-u.ac.jp.
    (1) (a) Y asumoto, T.; Murata, M. Chem. Rev. 1993, 93, 1897. (b) Scheuer, P. J. Tetrahedron 1994, 50, 3.
    (2) (a) Murata, M.; Lebrand, A. M.; Ishibashi, Y.; Yasumoto, T. J . Am. Chem. Soc. 1989, 111, 8929. (b) I'dem. Ibid. 1990, 112, 4380. (c) Recently, absolute configuration of ciguatoxin was determined to be the enantiomer of $\mathbf{1}$ as described in Satake, M.; M orohashi, A.; Oguri, H.; Oishi, T.; Hirama, M.; Harada, N.; Yasumoto, T. J. Am. Chem. Soc. 1997, 119, 11325.
    (3) Related synthetic studies on the AB fragment of ciguatoxin: (a) Suzuki, T.; Sato, O.; Hirama, M.; Yamamoto, Y.; Murata, M.; Yasumoto, T. Tetrahedron Lett. 1991, 32, 4505. (b) Oguri, H.; Hishiyama, S.; Oishi, T.; Hirama, M. Synlett 1995, 1252. (c) Oka, T.; Fujiwara, K.; Murai, A. Tetrahedron 1998, 54, 21.
    (4) (a) I chikawa, Y.; I sobe, M.; K onobe, M.; Goto, T. Carbohydr. Res. 1987, 171, 193. (b) Tsukiyama, T.; I sobe, M. Tetrahedron Lett. 1992, 33, 7911.
    (5) (a) Tanaka, S.; Tsukiyama, T.; I sobe, M. Tetrahedron Lett. 1993, 34, 5757. (b) Tanaka, S.; Isobe, M. Tetrahedron 1994, 50, 5633.
    (6) (a) Tanaka, S.; I sobe, M. Tetrahedron Lett. 1994, 35, 7801. (b) Tanaka, S., Tatsuta, T., Yamashita, O.; Isobe, M. Tetrahedron 1994, 50, 12883.
    (7) Nicholas, K. M. Acc. Chem. Res. 1987, 20, 207.
    (8) (a) I sobe, M.; Yenjai, C.; Tanaka, S. Synlett 1994, 916. (b) Yenjai, C.; I sobe, M. Tetrahedron 1998, 54, 2509.

[^1]:    (9) (a) Whistler, R. L. et al. Methods in Carbohydrate Chemistry I; Academic Press: New York, 1962; pp 84, 184. (b) Bredenkamp, M. W.; Holzapfel, C. W.; Toerien, F. Synth. Commun. 1992, 22, 2459.

[^2]:    (10) (a) I sobe, M.; Ichikawa, Y.; Bai, D.-L.; Goto, T. Tetrahedron Lett. 1985, 26, 5203. (b) I sobe, M.; Ichikawa, Y.; Funabashi, Y.; Mio, S.; Goto, T. Tetrahedron 1986, 42, 2863.
    (11) Classon, B.; Liu, Z.; Samuelsson, B. J . Org. Chem. 1988, 53, 6128.

[^3]:    (12) Lewis, M. D.; Cha, J. K.; Kishi, Y. J. Am. Chem. Soc. 1982, 104, 4976.
    (13) Hosokawa, S.; I sobe, M. Synlett 1995, 1179.
    (14) Related to this route, we examined direct formation of A ring from disaccharide as shown below. Unfortunately, however, this transformation was unsuccessful and only exo-cobalt complex was afforded.

[^4]:    (15) On this 1,4-anti stereoinduction: Hosokawa, S.; Isobe, M. Tetrahedron Lett. 1998, 39, 1917.
    (16) On the cyclization to afford bicyclic ether with endo-acetylene bis(cobalthexacarbonyl) complex; Isobe, M.; Hosokawa, S.; Kira, K. Chem. Lett. 1996, 473.
    (17) Soullez, D.; Ple, G.; Duhamel, L.; Duhamel, P. J. Chem. Soc., Chem. Commun. 1995, 563.
    (18) Y amaguchi, M.; Hirao, I. Tetrahedron Lett. 1983, 24, 391.
    (19) Hosokawa, S.; Isobe, M. Tetrahedron Lett. 1998, 39, 2609.

[^5]:    (20) (a) Liptak, A.; J odal, I.; Nanasi, P. Carbohydr. Res. 1975, 44, 1. (b) Hashimoto, H.; Asano, K.; Fujii, F.; Y oshimura, J. Carbohydr. Res. 1982, 104, 87.
    (21) (a) Isobe. M.; Nishikawa, T.; Pikul, S.; Goto, T. Tetrahedron Lett. 1987, 28, 6485. (b) Angibeoud, P.; Utille, J.-P. J. Chem. Soc. Parkin Trans. 1 1990, 5, 1490. (c) Zottola, M.; Rao, B. V.; Fraser-Reid, B. J. Chem. Soc., Chem. Commun. 1991, 969.
    (22) Lewis, M. D.; Cha, J. K.; Kishi, Y. J. Am. Chem. Soc. 1982, 104, 4976.

[^6]:    (23) (a) Fuji, K.; Ichikawa, K.; N ode, M.; Fujita, E. J. Org. Chem. 1979, 44, 1661. (b) Daly, S. M.; Armstrong, R. W. Tetrahedron Lett. 1989, 30, 5713.
    (24) (a) Corey, E. J .; Fuchs, P. L. Tetrahedron Lett. 1972, 13, 3769. (b) J iang, B.; Ma, P. Synth. Comm. 1995, 25, 3641.
    (25) Hosokawa, S.; I sobe, M. Synlett 1996, 351.

